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akaike.wts Compute Akaike weights from AIC scores

Description

Compute Akaike weights from AIC scores

Usage

akaike.wts(aa)

Arguments

aa vector of AIC or AICc scores

Details

This function converts a vector of AIC or AICc scores to Akaike weights, a vector that summarizes
proportional model support.

Value

a vector of Akaike weights

See Also

compareModels

Examples

akaike.wts(c(10, 14, 20))

as.paleoTS Make a Paleontological Time-series object

Description

Combines information into an object of class paleoTS
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Usage

as.paleoTS(
mm,
vv,
nn,
tt,
MM = NULL,
genpars = NULL,
label = NULL,
start.age = NULL,
oldest = c("first", "last"),
reset.time = TRUE

)

Arguments

mm vector of sample means

vv vector of sample variances

nn vector of sample sizes

tt vector of sample ages

MM vector of true means (simulated data)

genpars generating parameters (simulated data)

label optional, label for time-series

start.age optional, age of oldest sample

oldest value indicating if the oldest sample is first or last in the sequence

reset.time logical; if TRUE, then change time scale to start at t=0 and adjust start.age
accordingly

Details

This function combines data into a paleoTS object. For empirical data it may be more convenient
to use read.paleoTS.

If sample ages decrease through the sequence, as if given in millions of years ago, tt will auto-
matically be converted to time elapsed from the beginning of the sequence as long as reset.time
= TRUE.

Value

a paleoTS object

Note

All model-fitting functions estimate the contribution of sampling noise to the observed differences
between samples. They do this assuming that the trait is represented by sample means, which have
sampling variances equal to variance divided by sample size, vv/nn. If one is interested in analyzing
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statistics other than the sample mean (medians, quantiles, or other statistics), use the the following
procedure: set the statistic in question as the mm values, replace vv with a vector of the squared
standard errors for each estimate (generated by other means, for example bootstrapping), and set all
values of nn to one. When fitting such time-series, be sure to set the argument pool = FALSE.

See Also

read.paleoTS

Examples

x <- as.paleoTS(mm = rnorm(20), vv = rep(1, 20), nn = rep(25, 20), tt=0:19)
plot(x) # easier to use sim.Stasis()

as.paleoTSfit Create a paleoTSfit object

Description

Create a paleoTSfit object

Usage

as.paleoTSfit(
logL,
parameters,
modelName,
method,
K,
n,
se,
convergence = NULL,
logLFunction = NULL,
...

)

Arguments

logL model log-likelihood
parameters model parameter estimates
modelName model name
method parameterization, either "AD" or "Joint"
K number of model parameters
n sample size
se standard errors of parameter estimates
convergence code indicating optimization convergence
logLFunction name of the log-likelihood function
... optional additional elements added by some functions
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Value

a paleoTSfit object

Note

All model-fitting functions use this function to package the resulting data-model fits. Users will not
need to call this function.

Examples

# fake example; users won't need to use this unless they make their own model-fitting functions
w <- as.paleoTSfit(logL = 10, parameters = 2, modelName = "StrictStasis",

method = "Joint", K = 1, n = 25, se = NULL)

bootSimpleComplex Bootstrap test to see if a complex model is significantly better than a
simple model.

Description

Bootstrap test to see if a complex model is significantly better than a simple model.

Usage

bootSimpleComplex(
y,
simpleFit,
complexFit,
nboot = 99,
minb = 7,
ret.full.distribution = FALSE,
parallel = FALSE,
...

)

Arguments

y a paleoTS object
simpleFit a paleoTSfit object, representing the model fit of a simple model
complexFit a paleoTSfit object, representing the model fit of a complex model
nboot number of replications for parametric bootstrapping
minb minimum number of populations within each segment
ret.full.distribution

logical, indicating if the null distribution for the likelihood ratio from the para-
metric bootstrap should be returned

parallel logical, if TRUE, the bootstrapping is done using parallel computing
... further arguments, passed to optimization functions
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Details

Simulations suggest that AICc can be overly liberal with complex models with mode shifts or punc-
tuations (Hunt et al., 2015). This function implements an alternative of parametric boostrapping to
compare the fit of a simple model with a complex model. It proceeds in five steps:

1. Compute the observed gain in support from the simple to complex model as the likelihood
ratio, LRobs = −2(logLsimple− logLcomplex)

2. Simulate trait evolution under the specified simple model nboot times

3. Fit to each simulated sequence the specified simple and complex models

4. Measure the gain in support from simple to complex as the bootstrap likelihood ratio for each
simulated sequence

5. Compute the P-value as the percentile of the bootstrap distribution corresponding to the ob-
served LR.

Argument simpleFit should be a paleoTS object returned by the function fitSimple or similar
functions (e.g., opt.joint.GRW,opt.GRW, etc.). Argument complexFit must be a paleoTS object
returned by fitGpunc or fitModeShift.

Calculations can be speeded up by setting parallel = TRUE, which uses functions from the doParallel
package to run the bootstrap replicates in parallel, using one fewer than the number of detected
cores.

Value

A list of the observed likelihood ratio statistic, LRobs, the P-value of the test, and the number of
bootstrap replicates. If ret.full.distribution = TRUE, the null distribution of likelihood ratios
generated by parametric bootstrapping is also returned.

References

Hunt, G., M. J. Hopkins and S. Lidgard. 2015. Simple versus complex models of trait evolution
and stasis as a response to environmental change. PNAS 112(16): 4885-4890.

See Also

sim.Stasis.RW, fitModeShift

Examples

## Not run:
x <- sim.Stasis.RW(ns = c(15, 15), omega = 0.5, ms = 1, order = "Stasis-RW")
ws <- fitSimple(x)
wc <- fitModeShift(x, order = "Stasis-RW", rw.model = "GRW")
bootSimpleComplex(x, ws, wc, nboot = 50, minb = 7) # nboot too low for real analysis!

## End(Not run)
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cantius_L Time-series of the length of lower first molar for the Cantius lineage

Description

Time-series of the length of lower first molar for the Cantius lineage

Usage

cantius_L

Format

a paleoTS object with the data

Source

Clyde, W. C. and P. D. Gingerich (1994). Rates of evolution in the dentition of early Eocene Cantius:
comparison of size and shape. Paleobiology 20(4): 506-522.

checkSSMresiduals Compute and (optionally) plot residuals from SSM model fit

Description

Compute and (optionally) plot residuals from SSM model fit

Usage

checkSSMresiduals(
y,
w,
show.plot = TRUE,
resid.type = c("standardized", "unstandardized")

)

Arguments

y a paleoTS object

w a paleoTSfit object, where the fitting functions uses SSM

show.plot logical, if TRUE, several diagnostic plots are shown

resid.type residual type, either "standardized" or "unstandardized"
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Details

It is recommended that resid.type be set to the default, "standardized", which will scale residuals
by their expected standard deviation

Value

a vector of residuals, returned invisibly

Examples

y <- sim.GRW(ns = 50, ms = 0.2)
w <- fitSimple(y, model = "URW", method = "SSM") # wrong model
checkSSMresiduals(y, w, show.plot = TRUE) # positive residuals show model mis-fit

compareModels Compare model fits for a paleontological time-series

Description

Takes output from model-fitting functions and compiles model-fit information (log-likelihood, AICc,
etc.) into a convenient table

Usage

compareModels(..., silent = FALSE, sort = FALSE)

Arguments

... any number of model fit (as.paleoTSfit) objects

silent if TRUE, suppresses printing

sort if TRUE, the table sorts models from best to worst

Value

if silent = FALSE, the table is printed and nothing is returned. If silent = TRUE, printing is sup-
pressed and a list of two objects is returned: the table of model fits, modelFits, and a list of
parameter estimates, pl.

Examples

x <- sim.GRW(ns = 40, ms = 0.5, vs = 0.1)
m1 <- fitSimple(x, model = "GRW") # the true model
m2 <- fitSimple(x, model = "URW")
plot(x, modelFit = m1)
compareModels(m1, m2)
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dorsal.spines Time-series of dorsal spine data from a fossil stickleback lineage

Description

Time-series of dorsal spine data from a fossil stickleback lineage

Usage

dorsal.spines

Format

a paleoTS object of the mean number of dorsal spines (log-transformed)

Source

Bell, M.A., M.P. Travis and D.M. Blouw 2006. Inferring natural selection in a fossil threespine
stickleback. Paleobiology 32:562-577.

Hunt, G., M. A. Bell and M. P. Travis (2008). Evolution toward a new adaptive optimum: phe-
notypic evolution in a fossil stickleback lineage. Evolution 62(3): 700-710.

ESD Compute Expected Squared Divergence (ESD) for Evolutionary Mod-
els

Description

Computes for a specified model and duration of time the expected squared divergence (ESD), which
is a useful measure of the magnitude or rate of change across different models.

Usage

ESD(
y,
dt,
model = c("GRW", "URW", "Stasis", "allThree"),
method = c("Joint", "AD"),
pool = TRUE,
...

)
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Arguments

y a paleoTS object

dt the time interval to evaluate ESD

model the model of evolution to assume; see Details

method Joint or AD parameterization

pool logical, if TRUE, variances are averaged (pooled) across samples

... other arguments to the model-fitting functions

Details

Hunt (2012) argued that rate metrics make sense only in the context of specific models of evolution.
It is thus difficult to meaningfully compare rates across sequences generated by different evolution-
ary processes. ESD values can be used for a specified model and duration as a comparable measure
of the amount of evolutionary change that is expected. Acceptable values for the model argument
can be "GRW" for the general random walk (directional change), "URW" for the unbiased random
walk, and "Stasis." In addition, one can also specify "allThree", in which case all these models will
be fit and the resulting ESD will be the weighted average of them, using model support (Akaike
weights) for the weighting (see Hunt [2012], p. 370)

Value

the ESD value

References

Hunt, G. 2012. Measuring rates of phenotypic evolution and the inseparability of tempo and mode.
Paleobiology 38:351–373.

Examples

x<- sim.GRW(ns=20)
esd.urw<- ESD(x, dt=10, model="URW")
esd.all<- ESD(x, dt=10, model="allThree")

fit.sgs Fit a model of trait evolution with a protracted punctuation.

Description

This function fits a model of punctuated change that is is protracted enough that it is captured by
multiple transitional populations. Trait evolution starts in stasis, shifts to a general random walk,
and then shifts back into stasis.
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Usage

fit.sgs(
y,
minb = 7,
oshare = TRUE,
pool = TRUE,
silent = FALSE,
hess = FALSE,
meth = "L-BFGS-B",
model = "GRW"

)

Arguments

y a paleoTS object

minb minimum number of populations within each segment

oshare logical, if TRUE, variance assumed to be shared (equal) across segments

pool if TRUE, sample variances are substituted with their pooled estimate

silent logical, if TRUE, progress updates are suppressed

hess if TRUE, standard errors computed from the Hessian matrix are returned

meth optimization method, passes to optim

model type of random walk: "URW", unbiased random walk, or "GRW", a general (direc-
tional) random walk

Value

a paleoTSfit object

See Also

fitGpunc

Examples

x <- sim.sgs(ns = c(10, 10, 10)) # default values OK
w <- fit.sgs(x, minb = 8) # increase minb so example takes less time; not recommended!
plot(x)
abline(v = c(16, 31), lwd = 3) # actual shifts
abline(v = c(w$parameters[6:7]), lwd = 2, lty = 3, col = "red") # inferred shifts
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fit3models Fit a set of standard evolutionary models

Description

Fit a set of standard evolutionary models

Usage

fit3models(y, silent = FALSE, method = c("Joint", "AD", "SSM"), ...)

fit4models(y, silent = FALSE, method = c("Joint", "AD", "SSM"), ...)

Arguments

y a paleoTS object

silent if TRUE, results are returned as a list and not printed

method "Joint", "AD", or "SSM"; see fitSimple

... other arguments passed to model fitting functions

Details

Function fit3models fits the general (biased) random walk (GRW), unbiased random walk (URW),
and Stasis models. In addition to these three, fit4models also fits the model of Strict Stasis.

Value

if silent = FALSE, a table of model fit statistics, also printed to the screen. if silent = TRUE, a list
of the model fit statistics and model parameter values.

Functions

• fit4models(): add model of "Strict Stasis" to the three models

See Also

fitSimple

Examples

x <- sim.GRW(ns = 50, ms = 0.2)
fit4models(x)
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fit9models Fit large set of models to a time-series

Description

This function fits nine models to a time-series following Hunt et al. (2015). These include the
simple models fit by fit4models along with mode shift and punctuation models.

Usage

fit9models(y, silent = FALSE, method = c("Joint", "AD"), ...)

Arguments

y a paleoTS object

silent logical, if TRUE, progress updates are suppressed

method parameterization to use: Joint or AD; see Details

... other arguments, passed to optimization functions

Value

if silent = FALSE, a table of model fit statistics, also printed to the screen. if silent = TRUE, a list
of the model fit statistics and model parameter values.

References

Hunt, G., M. J. Hopkins and S. Lidgard. 2015. Simple versus complex models of trait evolution
and stasis as a response to environmental change. PNAS 112(16): 4885-4890.

Examples

## Not run:
x <- sim.Stasis.RW(ns = c(15, 15), omega = 0.5, ms = 1, order = "Stasis-RW")
plot(x)
fit9models(x)

## End(Not run)



fitGpunc 15

fitGpunc Fit trait evolution model with punctuations estimated from the data

Description

Fit trait evolution model with punctuations estimated from the data

Usage

fitGpunc(
y,
ng = 2,
minb = 7,
pool = TRUE,
oshare = TRUE,
method = c("Joint", "AD"),
silent = FALSE,
hess = FALSE,
parallel = FALSE,
...

)

Arguments

y a paleoTS object

ng number of groups (segments) in the sequence

minb minimum number of populations within each segment

pool if TRUE, sample variances are substituted with their pooled estimate

oshare logical, if TRUE, variance assumed to be shared (equal) across segments

method parameterization to use: Joint or AD; see Details

silent logical, if TRUE, progress updates are suppressed

hess if TRUE, standard errors computed from the Hessian matrix are returned

parallel logical, if TRUE, the analysis is done in parallel

... other arguments, passed to optimization functions

Details

This function tests all possible shift points for punctuations, subject to the constraint that the number
of populations in each segment is always >= minb. The shiftpoint yielding the highest log-likelihood
is returned as the solution, along with the log-likelihoods (all.logl) of all tested shift points (GG).

The function uses opt.punc (if method = "AD") or opt.joint.punc (if method = "Joint") to do
the fitting.
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Value

a paleoTSfit object with the results of the model-fitting.

Note

Calculations can be speeded up by setting parallel = TRUE, which uses functions from the doParallel
package to run the bootstrap replicates in parallel, using one fewer than the number of detected
cores.

See Also

fit9models, sim.punc

Examples

x <- sim.punc(ns = c(15, 15), theta = c(0,3), omega = c(0.1, 0.1))
w.punc <- fitGpunc(x, oshare = TRUE)
plot(x, modelFit = w.punc)

fitModeShift Fit model in which the mode of trait evolution shifts once

Description

Trait evolution is modeled as a shift from a random walk (general or unbiased) to stasis, or vice
versa.

Usage

fitModeShift(
y,
minb = 7,
pool = TRUE,
order = c("Stasis-RW", "RW-Stasis"),
rw.model = c("URW", "GRW"),
method = c("Joint", "AD"),
silent = FALSE,
hess = FALSE,
...

)

Arguments

y paleoTS object

minb minimum number of populations within each segment

pool if TRUE, sample variances are substituted with their pooled estimate

order whether stasis or random walk come first, one of Stasis-RW or RW-Stasis
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rw.model whether the random walk segment is an unbiased random walk, URW or a general
random walk, GRW

method parameterization to use: Joint or AD

silent logical, if TRUE, progress updates are suppressed

hess if TRUE, standard errors computed from the Hessian matrix are returned

... other arguments, passed to optimization functions

Value

a paleoTSfit object

See Also

sim.Stasis.RW

Examples

x <- sim.Stasis.RW(ns = c(15, 15), omega = 0.5, ms = 1, order = "Stasis-RW")
plot(x)
w <- fitModeShift(x, order = "Stasis-RW", rw.model = "GRW")
abline(v = x$tt[15], lwd = 3) # actual shift point
abline(v = x$tt[w$par["shift1"]], lty = 3, lwd = 2, col = "red") # inferred shift

fitMult Fit the same simple model across multiple time-series

Description

Fit the same simple model across multiple time-series

Usage

fitMult(
yl,
model = c("GRW", "URW", "Stasis", "covTrack"),
method = c("Joint", "AD"),
pool = TRUE,
zl = NULL,
hess = FALSE

)
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Arguments

yl a list of paleoTS objects

model the model to fit; see Details

method parameterization to use: Joint or AD

pool if TRUE, sample variances are substituted with their pooled estimate

zl for the covTrack model only, a list of covariate vectors, one each paleoTS ob-
ject in yl

hess if TRUE, standard errors computed from the Hessian matrix are returned

Details

This function fits a model with shared parameters across multiple trait time-series. The most likely
application would be to model a common evolutionary dynamic across different sequences, perhaps
representing time-series of the same trait and lineage from different localities or time intervals.

Four simple models are currently implemented:

• GRW: parameters mstep and vstep of the general random walk are shared across sequences.

• URW: parameter vstep of the unbiased random walk is shared across sequences.

• Stasis: parameter omega of stasis is shared across sequences.

• covTrack: parameters b0, b1, and evar of the covariate-tracking model are shared across
sequences.

Under the joint parameterization, method = "Joint", an additional parameter, anc is fit, represent-
ing the ancestral (starting) trait value. This parameter is estimated separately in each sequence so it
is not assumed that they all start at the same trait value.

Value

a paleoTSfit object with the results of the model-fitting

Note

The models are described in the help for fitSimple and the functions linked from there.

See Also

fitSimple

Examples

x1 <- sim.GRW(ms = 1, vs = 0.2)
x2 <- sim.GRW(ms = 1, vs = 0.2)
fitMult(list(x1, x2), model = "GRW")
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fitSimple Fit simple models of trait evolution

Description

Fit simple models of trait evolution

Usage

fitSimple(
y,
model = c("GRW", "URW", "Stasis", "StrictStasis", "OU", "ACDC", "covTrack"),
method = c("Joint", "AD", "SSM"),
pool = TRUE,
z = NULL,
hess = FALSE

)

Arguments

y a paleoTS object
model the model to be fit, one of "GRW", "URW", "Stasis", "OU", "ACDC","covTrack"

method parameterization to use: Joint, AD or SSM; see Details
pool if TRUE, sample variances are substituted with their pooled estimate
z a vector of a covariate, used only for the "covTrack" model
hess if TRUE, standard errors computed from the Hessian matrix are returned

Details

This is a convenience function that calls the specific individual functions for each model and pa-
rameterization, such as opt.GRW and opt.joint.GRW. The models that this function can fit are:

• GRW: General Random Walk. Under this model, evolutionary changes, or "steps" are drawn
from a distribution with a mean of mstep and variance of vstep. mstep determines direction-
ality and vstep determines volatility (Hunt, 2006).

• URW: Unbiased Random Walk. Same as GRW with mstep = 0, and thus evolution is non-
directional. For a URW, vstep is the rate parameter.

• Stasis: This parameterization follows Sheets & Mitchell (2001), with a constant mean theta
and variance omega (equivalent to white noise).

• Strict Stasis: Same as Stasis with omega = 0, indicating no real evolutionary differences; all
observed variation is sampling error (Hunt et al. 2015).

• OU: Ornstein-Uhlenbeck model (Hunt et al. 2008). This model is that of a population ascend-
ing a nearby peak in the adaptive landscape. The optimal trait value is theta, alpha indicates
the strength of attraction to that peak (= strength of stabilizing selection around theta), vstep
measures the random walk component (from genetic drift) and anc is the trait value at the start
of the sequence.
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• ACDC: Accelerating or decelerating evolution model (Blomberg et al. 2003). This model is
that of a population undergoing a random walk with a step variance that increases or decreases
over time. The initial step variance is vstep0, and the parameter r controls its rate of increase
(if positive) or decrease (if negative) over time. When r < 0, the is equivalent to the "Early
burst" model of Harmon et al.

• covTrack: Covariate-tracking (Hunt et al. 2010). The trait tracks a covariate with slope
b1, consistent with an adaptive response. evar is the residual variance, and, under method =
"Joint", b0 is the intercept of the relationship between trait and covariate. model.

Value

a paleoTSfit object with the model fitting results

Note

For the covariate-tracking model, z should be a vector of length n when method = "Joint" and n -
1 when method = "AD", where n is the number of samples in y.

Method = "Joint" is a full likelihood approach, considering each time-series as a joint sample
from a multivariate normal distribution. Method = "AD" is a REML approach that uses the differ-
ences between successive samples. They perform similarly, but the Joint approach does better under
some circumstances (Hunt, 2008).

References

Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond.
Paleobiology 32(4): 578-601.
Hunt, G. 2008. Evolutionary patterns within fossil lineages: model-based assessment of modes,
rates, punctuations and process. p. 117-131 In From Evolution to Geobiology: Research Questions
Driving Paleontology at the Start of a New Century. Bambach, R. and P. Kelley (Eds).
Hunt, G., M. A. Bell and M. P. Travis. 2008. Evolution toward a new adaptive optimum: pheno-
typic evolution in a fossil stickleback lineage. Evolution 62(3): 700-710.
Sheets, H. D., and C. Mitchell. 2010. Why the null matters: statistical tests, random walks and
evolution. Genetica 112– 113:105–125.
Blomberg, S. P., T. Garland, and A. R. Ives. 2003. Testing for phylogenetic signal in comparative
data: behavioural traits are more labile. Evolution 57(4):717-745.
Harmon, L. J. et al. 2010. Early bursts of body size and shape evolution are rare in comparative
data. Evolution 64(8):2385-2396.

See Also

opt.GRW, opt.joint.GRW, opt.joint.OU, opt.covTrack

Examples

y <- sim.Stasis(ns = 20, omega = 2)
w1 <- fitSimple(y, model = "GRW")
w2 <- fitSimple(y, model = "URW")
w3 <- fitSimple(y, model = "Stasis")
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compareModels(w1, w2, w3)

IC Compute Information Criteria

Description

Compute Information Criteria

Usage

IC(logL, K, n = NULL, method = c("AICc", "AIC", "BIC"))

Arguments

logL log-likelihood

K number of parameters

n sample size

method either "AIC", "AICc", or "BIC"

Value

the value of the specified information criterion

Note

This function is used internally by the model-fitting functions. It will not generally be called directly
by the user.

Examples

ic1 <- IC(logL = 0, K = 2, method = "AIC") # plain AIC
ic2 <- IC(logL = 0, K = 2, n = 10, method = "AICc")
ic3 <- IC(logL = 0, K = 2, n = 1000, method = "AICc") # converges to AIC with increasing n
print(rbind(ic1, ic2, ic3))
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Kfiltertv Time-varying Kalman filter calculations

Description

Time-varying Kalman filter calculations

Usage

Kfiltertv(num, y, Atv, mu0, Sigma0, Phitv, Ups, Gam, Qtv, Rtv, input)

Arguments

num the number of samples in the time-series

y values of the time-series

Atv q x p x n observation array

mu0 p x 1 vector setting the mean of the system at time zero

Sigma0 p x p variance matrix of the system at time zero

Phitv p x p x n array reflecting autoregression of the state variables

Ups p x r matrix with the coefficients/parameters relating the inputs to the system
equation

Gam q x r matrix with the coefficients/parameters relating the inputs to the observa-
tion equation

Qtv p x p x n array of system stochastic variance; user needs to ensure positive
definite

Rtv q x q x n array observation stochastic variance; user needs to ensure positive
definite

input n x r array of the exogenous variables/covariates

Details

For the dimensions of the argument arrays, n is the length of the time-series, q is the dimension of
the observation variable(s), p is the dimension of the state variable(s), and r isthe dimension of the
input variable(s).

This function is based on the Kfilter function of the astsa package, modified modified to al-
low for time-varying terms for the Kalman filter. This modification facilitates fitting a broader array
of models and handling non-uniform temporal spacing of samples. See the documentation for that
function, and the reference below for additional information.
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Value

A list of the following elements:

• xp one-step-ahead prediction of the state

• Pp mean square prediction error

• xf filter value of the state

• Pf mean square filter error

• like log-likelihood

• innov innovation series

• sig innovation covariances

• Kn last value of the gain, needed for smoothing

Note

This function is used in the internal SSM log-likelihood functions for the models. The user will not
need to use this they create their own model-fitting functions.

Author(s)

John Fricks (jfricks@asu.edu)

References

Shumway, R. H., and D. S. Stoffer. 2017. Time Series Analysis and its Applications (4th Ed.)
Springer International.

Examples

y <- sim.GRW(ms = 0, vs = 1, vp = 0)
n <- length(y)
kf <- Kfiltertv(n ,y = y$mm, Atv = array(1, dim = c(1,1,n)), mu0 = y$mm[1],

Sigma0 = y$vv[1]/y$nn[1], Phitv = array(1, dim = c(1,1,n)),
Ups = NULL, Gam = NULL, Qtv = array(1, dim = c(1,1,n)),
Rtv = array(0, dim = c(1,1,n)), input = NULL)

ln.paleoTS Approximate log-transformation of time-series data

Description

Approximate log-transformation of time-series data

Usage

ln.paleoTS(y)
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Arguments

y a paleoTS object

Details

For a random variable x, its approximate mean on a natural log scale is the log of its untransformed
mean. The approximate variance on a log scale is equal to the squared coefficient of variation.

Value

the converted paleoTS object

Note

This transformation only makes sense for variables with dimension and a true zero point, such as
lengths and areas.

References

Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond.
Paleobiology 32:578-601.
Lewontin, R. 1966. On the measurement of relative variability. Systematic Zoology 15:141-142.

Examples

x <- sim.Stasis(ns = 10, theta = 20, omega = 1)
plot(x)
xl <- ln.paleoTS(x)
plot(xl)

LRI Log-rate, Log-interval (LRI) method of Gingerich

Description

Gingerich (1993) introduced a method that plots on log-log scale, the rate and interval for each
pair of samples in an evolutionary sequence. On this plot, the slope is interpreted as an indicator
of evolutionary mode (-1 for stasis, 0.5 for random walk, 0 for directional), and the intercept is
interpreted as a measure of the rate of evolution over one generation.

Usage

LRI(y, gen.per.t = 1e+06, draw = TRUE)

Arguments

y a paleoTS object
gen.per.t the number of generations per unit time
draw logical, if TRUE, a plot is produced
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Details

Following Gingerich (1993), a robust line is fit through the points by minimizing the sum of absolute
deviations. If generations are one year long and time is measured in Myr, gen.per.t= 1e6.

Value

A named vector with three elements: Intercept, slope, and GenerationalRate

Note

This method was important in early attempts to disentangle evolutionary tempo and mode. Likelihood-
based methods have a more sound statistical basis, and in particular the estimation of ’Generational
Rates’ using LRI is compromised by sampling error; see Hunt (2012) and the example below.

References

Gingerich, P.D. 1993. Quantification and comparison of evolutionary rates. American Journal of
Science 293-A:453–478.

Hunt, G. 2012. Measuring rates of phenotypic evolution and the inseparability of tempo and mode.
Paleobiology 38:351–373.

See Also

lynchD

Examples

set.seed(1)
xFast <- sim.GRW(ns = 20, ms = 0.5, vs = 0.2) # fast evolution
xSlow <- sim.Stasis(ns = 20, omega = 0) # strict stasis (zero rates)
lri.Fast <- LRI(xFast, draw = FALSE)
lri.Slow <- LRI(xSlow, draw = FALSE)
print(lri.Fast[3], 4)
print(lri.Slow[3], 4) # LRI thinks strict stasis rates are MUCH faster!

lynchD Compute Lynch’s Delta rate metric

Description

This function computes D, the rate metric proposed by Lynch (1990). This metric derives from
the random walk model, with D = Vstep/(2Vp), where Vstep is the step variance of the unbiased
random walk, and Vp is the within sample variance, pooled among samples. Under mutation - drift
equilibrium, D is expected to range approximately between 5e-5 and 5e-3.

Usage

lynchD(y, gen.per.t = 1e+06, pool = TRUE, method = c("Joint", "AD"), ...)
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Arguments

y a paleoTS object

gen.per.t the number of generations per unit time

pool logical, whether variances should be pooled over samples

method parameterization to use: based on ancestor-descendant (AD) differences, or
Joint consideration of all samples

... further arguments, passed to opt.URW or opt.joint.URW

Value

D value of rate metric

pooled.var value of pooled within-sample variance

gen.per.t number of generations per unit time

vstep computed Vstep, at the original time scale of y

drift.range expected minimum and maximum values of D consistent with neutral evolution

result conclusion reached about the plausibility of neutral evolution

References

Lynch (1990). The rate of morphological evolution in mammals from the standpoint of the neutral
expectation. The American Naturalist 136:727-741. Hunt, G. 2012. Fitting and comparing models
of phyletic evolution: random walks and beyond. Paleobiology 38:351-373.

Examples

y <- sim.GRW(ns = 20, ms = 0, vs = 1e-4, tt=seq(0, 1e6, length.out=20)) # per-year simulation
lynchD(y, gen.per.t = 1)

mle.GRW Analytical ML estimator for random walk and stasis models

Description

Analytical ML estimator for random walk and stasis models

Usage

mle.GRW(y)

mle.URW(y)

mle.Stasis(y)
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Arguments

y a paleoTS object

Value

a vector of mstep and vstep for mle.GRW, vstep for mle.URW, and theta and omega for mle.Stasis

Functions

• mle.URW(): ML parameter estimates for URW model

• mle.Stasis(): ML parameter estimates for Stasis model

Note

These analytical solutions assume even spacing of samples and equal sampling variance in each,
which will usually be violated in real data. They are used here mostly to generate initial parameter
estimates for numerical optimization; they not likely to be called directly by the user.

See Also

fitSimple

Examples

y <- sim.GRW(ms = 1, vs = 1)
w <- mle.GRW(y)
print(w)

opt.covTrack Fit a model in which a trait tracks a covariate

Description

Fit a model in which a trait tracks a covariate

Usage

opt.covTrack(
y,
z,
pool = TRUE,
cl = list(fnscale = -1),
meth = "L-BFGS-B",
hess = FALSE

)

opt.joint.covTrack(
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y,
z,
pool = TRUE,
cl = list(fnscale = -1),
meth = "L-BFGS-B",
hess = FALSE

)

Arguments

y a paloeTS object

z a vector of covariate values

pool if TRUE, sample variances are substituted with their pooled estimate

cl optional control list, passed to optim()

meth optimization algorithm, passed to optim()

hess if TRUE, return standard errors of parameter estimates from the hessian matrix

Details

In this model, changes in a trait are linearly related to changes in a covariate with a slope of b and
residual variance evar: dx = b * dz + eps, where eps ~ N(0, evar). This model was described,
and applied to an example in which body size changes tracked changes in temperature, by Hunt et
al. (2010).

For the AD version (opt.covTrack), a trait sequence of length ns, the covariate, z, can be of length
ns - 1, interpreted as the vector of changes, dx. If z is of length ns, differences are taken and these
are used as the dx’s, with a warning issued.

The Joint version (opt.joint.covTrack), z should be of length ns and there is an additional pa-
rameter that is the intercept of the linear relationship between trait and covariate. See warning below
about using the Joint version.

Value

a paleoTSfit object with the results of the model fitting

Functions

• opt.joint.covTrack(): fits the covTrack model using the joint parameterization

Warning

The Joint parameterization of this model can be fooled by temporal autocorrelation and, especially,
trends in the trait and the covariate. The latter is tested for, but the AD parameterization is generally
safer for this model.
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References

Hunt, G, S. Wicaksono, J. E. Brown, and K. G. Macleod. 2010. Climate-driven body size trends in
the ostracod fauna of the deep Indian Ocean. Palaeontology 53(6): 1255-1268.

See Also

fitSimple

Examples

set.seed(13)
z <- c(1, 2, 2, 4, 0, 8, 2, 3, 1, 9, 4, 3)
x <- sim.covTrack(ns = 12, z = z, b = 0.5, evar = 0.2)
w.urw <- opt.URW(x)
w.cov <- opt.covTrack(x, z)
compareModels(w.urw, w.cov)

opt.GRW Fit evolutionary model using "AD" parameterization

Description

Fit evolutionary model using "AD" parameterization

Usage

opt.GRW(
y,
pool = TRUE,
cl = list(fnscale = -1),
meth = "L-BFGS-B",
hess = FALSE

)

opt.URW(
y,
pool = TRUE,
cl = list(fnscale = -1),
meth = "L-BFGS-B",
hess = FALSE

)

opt.Stasis(
y,
pool = TRUE,
cl = list(fnscale = -1),
meth = "L-BFGS-B",
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hess = FALSE
)

opt.StrictStasis(y, pool = TRUE, cl = list(fnscale = -1), hess = FALSE)

Arguments

y a paleoTS object

pool if TRUE, sample variances are substituted with their pooled estimate

cl optional control list, passed to optim()

meth optimization algorithm, passed to optim()

hess if TRUE, return standard errors of parameter estimates from the hessian matrix

Details

These functions use differences between consecutive populations in the time series in order to re-
move temporal autocorrelation. This is referred to as the "Ancestor-Descendant" or "AD" parame-
terization by Hunt [2008], and it is a REML approach (like phylogenetic independent contrasts). A
full ML approach, called "Joint" was found to have generally better performance (Hunt, 2008) and
generally should be used instead.

Value

a paleoTSfit object with the model fitting results

Functions

• opt.URW(): fit the URW model by the AD parameterization

• opt.Stasis(): fit the Stasis model by the AD parameterization

• opt.StrictStasis(): fit the Strict Stasis model by the AD parameterization

Note

It is easier to use the convenience function fitSimple.

References

Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond.
Paleobiology 32(4): 578-601.

See Also

fitSimple, opt.joint.GRW
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Examples

x <- sim.GRW(ns = 20, ms = 1) # strong trend
plot(x)
w.grw <- opt.GRW(x)
w.urw <- opt.URW(x)
compareModels(w.grw, w.urw)

opt.GRW.shift Fit random walk model with shift(s) in generating parameters

Description

Fit random walk model with shift(s) in generating parameters

Usage

opt.GRW.shift(y, ng = 2, minb = 7, model = 1, pool = TRUE, silent = FALSE)

Arguments

y a paloeTS object

ng number of segments in the sequence

minb minimum number of populations in each segment

model numeric, specifies exact evolutionary model; see Details

pool if TRUE, sample variances are substituted with their pooled estimate

silent logical, if TRUE, progress updates are suppressed

Details

Fits a model in which a sequence is divided into two or more segments and trait evolution proceeds
as a general random walk, with each segment (potentially) getting its own generating parameters
(mstep, vstep).

This function tests for shifts after each population, subject to the constraint that the number of pop-
ulations in each segment is always >= minb. The shiftpoint yielding the highest log-likelihood is
returned as the solution, along with the log-likelihoods (all.logl of all tested shift points (GG).

Different variants of the model can be specified by the model argument:

• model = 1: mstep is separate across segments; vstep is shared

• model = 2: mstep is shared across segments; vstep is separate

• model = 3: mstep is set to zero (unbiased random walk); vstep is separate across segments

• model = 4: mstep and vstep are both separate across segments
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Value

a paleoTSfit object

See Also

sim.GRW.shift

Examples

x <- sim.GRW.shift(ns = c(15,15), ms = c(0, 1), vs = c(0.1,0.1))
w.sep <- opt.GRW.shift(x, ng = 2, model = 4)
w.sameVs <- opt.GRW.shift(x, ng = 2, model = 1)
compareModels(w.sep, w.sameVs)
plot(x)
abline(v = x$tt[16], lwd = 3) # actual shift point
abline(v = x$tt[w.sameVs$par["shift1"]], lty = 3, col = "red", lwd = 2) # inferred shift point

opt.joint.GRW Fit evolutionary models using the "Joint" parameterization

Description

Fit evolutionary models using the "Joint" parameterization

Usage

opt.joint.GRW(
y,
pool = TRUE,
cl = list(fnscale = -1),
meth = "L-BFGS-B",
hess = FALSE

)

opt.joint.URW(
y,
pool = TRUE,
cl = list(fnscale = -1),
meth = "L-BFGS-B",
hess = FALSE

)

opt.joint.Stasis(
y,
pool = TRUE,
cl = list(fnscale = -1),
meth = "L-BFGS-B",
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hess = FALSE
)

opt.joint.StrictStasis(y, pool = TRUE, cl = list(fnscale = -1), hess = FALSE)

Arguments

y a paleoTS object
pool if TRUE, sample variances are substituted with their pooled estimate
cl optional control list, passed to optim()

meth optimization algorithm, passed to optim()

hess if TRUE, return standard errors of parameter estimates from the hessian matrix

Details

These functions use the joint distribution of population means to fit models using a full maximum-
likelihood approach. This approach was found to have somewhat better performance than the "AD"
approach, especially for noisy trends (Hunt, 2008).

Value

a paleoTSfit object with the model fitting results

Functions

• opt.joint.URW(): fit the URW model by the Joint parameterization
• opt.joint.Stasis(): fit the Stasis model by the Joint parameterization
• opt.joint.StrictStasis(): fit the Strict Stasis model by the Joint parameterization

Note

It is easier to use the convenience function fitSimple.

References

Hunt, G., M. J. Hopkins and S. Lidgard. 2015. Simple versus complex models of trait evolution
and stasis as a response to environmental change. Proc. Natl. Acad. Sci. USA 112(16): 4885-4890.

See Also

fitSimple, opt.GRW

Examples

x <- sim.GRW(ns = 20, ms = 1) # strong trend
plot(x)
w.grw <- opt.joint.GRW(x)
w.urw <- opt.joint.URW(x)
compareModels(w.grw, w.urw)
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opt.joint.OU Fit Ornstein-Uhlenbeck model using the "Joint" parameterization

Description

Fit Ornstein-Uhlenbeck model using the "Joint" parameterization

Usage

opt.joint.OU(
y,
pool = TRUE,
cl = list(fnscale = -1),
meth = "L-BFGS-B",
hess = FALSE

)

Arguments

y a paleoTS object

pool if TRUE, sample variances are substituted with their pooled estimate

cl optional control list, passed to optim()

meth optimization algorithm, passed to optim()

hess if TRUE, return standard errors of parameter estimates from the hessian matrix

Details

This function fits an Ornstein-Uhlenbeck (OU) model to time-series data. The OU model has four
generating parameters: an ancestral trait value (anc), an optimum value (theta), the strength of
attraction to the optimum (alpha), and a parameter that reflects the tendency of traits to diffuse
(vstep). In a microevolutionary context, these parameters can be related to natural selection and
genetic drift; see Hunt et al. (2008).

Value

a paleoTSfit object with the model fitting results

Note

It is easier to use the convenience function fitSimple. Note also that preliminary work found that
the "AD" parameterization did not perform as well for the OU model and thus it is not implemented
here.

References

Hunt, G., M. A. Bell and M. P. Travis. 2008. Evolution toward a new adaptive optimum: phenotypic
evolution in a fossil stickleback lineage. Evolution 62(3): 700-710.
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See Also

fitSimple, opt.joint.GRW

Examples

x <- sim.OU(vs = 0.5) # most defaults OK
w <- opt.joint.OU(x)
plot(x, modelFit = w)

opt.punc Fit a model of trait evolution with specified punctuation(s)

Description

Fit a model of trait evolution with specified punctuation(s)

Usage

opt.punc(
y,
gg,
pool = TRUE,
cl = list(fnscale = -1),
meth = "L-BFGS-B",
hess = FALSE,
oshare

)

opt.joint.punc(
y,
gg,
pool = TRUE,
cl = list(fnscale = -1),
meth = "L-BFGS-B",
hess = FALSE,
oshare

)

Arguments

y a paleoTS object
gg vector of indices indicating different segments
pool if TRUE, sample variances are substituted with their pooled estimate
cl optional control list, passed to optim()

meth optimization algorithm, passed to optim()

hess if TRUE, return standard errors of parameter estimates from the
oshare logical, if TRUE, variance assumed to be shared (equal) across segments
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Details

The sequence is divided into segments, which are separated by punctuations. Means for each seg-
ment are given by the vector theta with variances given by the vector omega (or a single value if
oshare = TRUE). This function calls optim to numerically fit this model to a time-series, y.

Value

a paleoTSfit object with the results of the model fitting

Functions

• opt.joint.punc(): fits the punctuation model using the joint parameterization

Note

These functions would be used in the uncommon situation in which there is a prior hypothesis as to
where the punctuation(s) take place. Normally users will instead use the function fitGpunc, which
uses these functions to fit a range of possible timings for the punctuations.

See Also

fitGpunc

Examples

x <- sim.punc(ns = c(15, 15), theta = c(0,3), omega = c(0.1, 0.1))
w.sta <- fitSimple(x, model = "Stasis", method = "Joint")
w.punc <- opt.joint.punc(x, gg = rep(1:2, each = 15), oshare = TRUE)
compareModels(w.sta, w.punc)

opt.ssm.GRW Fit evolutionary models using state-space models (SSM)

Description

Fit evolutionary models using state-space models (SSM)

Usage

opt.ssm.GRW(y, pool = TRUE, cl = list(fnscale = -1), hess = FALSE)

opt.ssm.URW(y, pool = TRUE, cl = list(fnscale = -1), hess = FALSE)

opt.ssm.Stasis(y, pool = TRUE, cl = list(fnscale = -1), hess = FALSE)

opt.ssm.StrictStasis(y, pool = TRUE, cl = list(fnscale = -1), hess = FALSE)

opt.ssm.OU(y, pool = TRUE, cl = list(fnscale = -1), hess = FALSE)
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opt.ssm.ACDC(y, pool = TRUE, cl = list(fnscale = -1), hess = FALSE)

opt.ssm.covOU(y, z, pool = TRUE, cl = list(fnscale = -1), hess = FALSE)

opt.ssm.URWshift(y, gg, pool = TRUE, cl = list(fnscale = -1), hess = FALSE)

opt.ssm.covOU_vshift(
y,
z,
gg,
pool = TRUE,
cl = list(fnscale = -1),
hess = FALSE

)

Arguments

y a paleoTS object

pool if TRUE, sample variances are substituted with their pooled estimate

cl optional control list, passed to optim()

hess if TRUE, return standard errors of parameter estimates from the hessian matrix

z a covariate vector, used only for the covOU models

gg a grouping vector, used only for the URWshift and covOU_vshift models

Details

These functions use a state space model formulation to compute likelihoods and fit models.

Functions to fit the OU covariate tracking models (covOU, covOU_vshift) require a covariate argu-
ment, z. At present, only the OU covariate tracking with a shift in the step variance (covOU_vshift)
requires the grouping vector argument (gg).

Value

a paleoTSfit object with the model fitting results

Note

For GRW, URW, Stasis, StrictStasis, ACDC and OU models, it will likely be easier to use the
convenience function fitSimple with argument method = "SSM".
The grouping vector, gg, is a vector of length equal to the number of samples. It has one element for
each sample and takes integer value from 1 to the number of sample groups separated by shiftpoints.
See the example below.

See Also

fitSimple, opt.joint.GRW
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Examples

y <- sim.GRW(ns = 30, vs = 2)
w1 <- opt.ssm.URW(y)
gg <- rep(1:2, each = 15) # shift occurs immediately after sample 15
w2 <- opt.ssm.URWshift(y, gg = gg) # test model in which the step variance shifts
compareModels(w1, w2)

plot.paleoTS Plot a paleoTS object

Description

Plot a paleoTS object

Usage

## S3 method for class 'paleoTS'
plot(
x,
nse = 1,
pool = FALSE,
add = FALSE,
modelFit = NULL,
pch = 21,
pt.bg = "white",
lwd = 1.5,
ylim = NULL,
xlab = NULL,
ylab = NULL,
add.label = TRUE,
...

)

Arguments

x a paleoTS object

nse the number of standard errors represented by the error bars on the plot; defaults
to 1

pool logical indicating if variances should be pooled across samples for the purposes
of displaying error bars; defaults to FALSE

add logical, if TRUE, adds to existing plot

modelFit optional model fit from fitting functions

pch plotting symbol, defaults to 19

pt.bg color fill for points, defaults to white

lwd line width, defaults to 1.5
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ylim optional, y-limits of the plot

xlab optional, label for x-axis

ylab optional, label for y-axis

add.label logical, if TRUE, writes label from x at the top of the plot

... other arguments passed to plotting functions

Value

none.

Examples

x <- sim.GRW(ns = 30)
w <- fitSimple(x, model = "GRW", method = "Joint")
plot(x, modelFit = w)
plot(x, xlab = "Time [Myr]", ylab = "Body length [mm]", pch = 22, pt.bg = "blue")

pool.var Compute a pooled variance

Description

Computes a pooled variance from samples in a paleontological time-series

Usage

pool.var(y, nn = NULL, minN = NULL, ret.paleoTS = FALSE)

Arguments

y either a paleoTS object, or a vector of sample variances

nn a vector of sample sizes

minN sample size below which variances are replaced with pooled variances. See
Details.

ret.paleoTS if TRUE, a paleoTS object is returned. If FALSE, the value of the pooled vari-
ance is returned.

Details

A pooled variance of a set of populations is the weighted average of the individual variances of the
populations, with the weight for each population equal to its sample size minus one.

For many kinds of traits, variation levels tend to be similar among closely related populations.
When this is true and sample sizes are low, much of the observed differences in variance among
samples will be due to the high noise of estimated the variances. Replacing the observed variances
of all populations (or only those with nn < minN) with the estimated pooled variance can reduce this
noise.



40 print.paleoTSfit

Value

if ret.paleoTS = TRUE a paleoTS object with all (or some) variances replaced with the pooled
variance; otherwise the pooled variance

Examples

data(cantius_L)
cant_all <- pool.var(cantius_L, ret.paleoTS = TRUE) # replace all variances with pooled variance
cant_n5 <- pool.var(cantius_L, minN = 5, ret.paleoTS = TRUE) # replace only pops with n < 5

print.paleoTSfit Print a paleoTSfit object

Description

Print a paleoTSfit object

Usage

## S3 method for class 'paleoTSfit'
print(x, ...)

Arguments

x a paleoTSfit object

... other arguments for other print methods

Value

None; this function is used only to print

Examples

y <- sim.punc(theta = c(0, 2), omega = c(0.1, 0.1))
wg <- fitGpunc(y)
print(wg)
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read.paleoTS Read a text-file with data from a paleontological time-series

Description

Read a text-file with data from a paleontological time-series

Usage

read.paleoTS(file = NULL, oldest = "first", reset.time = TRUE, ...)

Arguments

file file name; if not supplied, an interactive window prompts the user to navigate to
the text file

oldest "first" if samples are in order from oldest to youngest, "last" if the opposite

reset.time logical; see as.paleoTS

... other arguments, passed to read.table

Details

This function reads a text file with a specified format and converts it into a paleoTS object. It will
often be the easiest way for users to import their own data. The text file should have four columns
without headers, in this order: sample size, sample means, sample variances, sample ages.

Value

a paleoTS object

See Also

as.paleoTS

sim.covTrack Simulate trait evolution that tracks a covariate

Description

Simulate trait evolution that tracks a covariate
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Usage

sim.covTrack(
ns = 20,
b = 1,
evar = 0.1,
z,
nn = rep(20, times = ns),
tt = 0:(ns - 1),
vp = 1

)

Arguments

ns number of populations in a sequence

b slope of the relationship between the change in the covariate and the change in
the trait

evar residual variance of the same relationship

z vector of covariate that the trait tracks

nn vector of sample sizes for populations

tt vector of times (ages) for populations

vp phenotypic trait variance within each population

Details

In this model, changes in a trait are linearly related to changes in a covariate with a slope of b and
residual variance evar: dx = b * dz + eps, where eps ~ N(0, evar). This model was described,
and applied to an example in which body size changes tracked changes in temperature, by Hunt et
al. (2010).

Value

a paleoTS object

Note

For a trait sequence of length ns, the covariate, z, can be of length ns - 1,in which case it is
interpreted as the vector of changes, dz. If z is of length ns, differences are taken and these are used
as the dz’s.

References

Hunt, G, S. Wicaksono, J. E. Brown, and K. G. Macleod. 2010. Climate-driven body size trends in
the ostracod fauna of the deep Indian Ocean. Palaeontology 53(6): 1255-1268.
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Examples

set.seed(13)
z <- c(1, 2, 2, 4, 0, 8, 2, 3, 1, 9, 4, 3)
x <- sim.covTrack(ns = 12, z = z, b = 0.5, evar = 0.2)
plot(x, ylim = c(-1, 10))
lines(x$tt, z, col = "blue")

sim.GRW Simulate random walk or directional time-series for trait evolution

Description

Simulate random walk or directional time-series for trait evolution

Usage

sim.GRW(ns = 20, ms = 0, vs = 0.1, vp = 1, nn = rep(20, ns), tt = 0:(ns - 1))

Arguments

ns number of populations in the sequence

ms mean of evolutionary "steps"

vs variance of evolutionary "steps"

vp phenotypic variance within populations

nn vector of population sample sizes

tt vector of population times (ages)

Details

The general random walk model considers time in discrete steps. At each time step, an evolutionary
change is drawn at random from a distribution of possible evolutionary "steps." It turns out that
the long-term dynamics of an evolving lineage depend only on the mean and variance of this step
distribution. The former, mstep, determined the directionality in a sequence and the latter, vstep,
determines its volatility.

Value

a paleoTS object

Note

This function simulates an unbiased random walk if ms is equal to zero and a general (or biased)
random walk otherwise.

See Also

sim.Stasis, sim.OU, as.paleoTS
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Examples

x.grw <- sim.GRW(ms = 0.5)
x.urw <- sim.GRW(ms = 0)
plot(x.grw, ylim = range(c(x.grw$mm, x.urw$mm)))
plot(x.urw, add = TRUE, col = "blue")
legend(x = "topleft", c("GRW", "URW"), col = c("black", "blue"), lty = 1)

sim.GRW.shift Simulate (general) random walk with shift(s) in generating parameters

Description

Simulate (general) random walk with shift(s) in generating parameters

Usage

sim.GRW.shift(
ns = c(10, 10),
ms = c(0, 1),
vs = c(0.5, 0.5),
nn = rep(30, sum(ns)),
tt = 0:(sum(ns) - 1),
vp = 1

)

Arguments

ns vector of the number of samples in each segment

ms vector of mean step parameter in each segment

vs vector of step variance parameter in each segment

nn vector of sample sizes, one for each population

tt vector of samples times (ages)

vp phenotypic variance in each sample

Details

Simulates under a model in which a sequence is divided into two or more segments. Trait evolu-
tion proceeds as a general random walk, with each segment getting its own generating parameters
(mstep, vstep).

Value

a paleoTS object with the simulated time-series

See Also

sim.GRW, sim.sgs, opt.GRW.shift
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Examples

x <- sim.GRW.shift(ns = c(10,10,10), ms = c(0, 1, 0), vs = c(0.1,0.1,0.1))
plot(x)
abline(v = c(9.5, 19.5), lty = 3, lwd = 2, col = "blue") # shows where dynamics shift
text (c(5, 15, 25), c(2,2,2), paste("segement", 1:3, sep =" "), col = "blue")

sim.OU Simulate an Ornstein-Uhlenbeck time-series

Description

Simulate an Ornstein-Uhlenbeck time-series

Usage

sim.OU(
ns = 20,
anc = 0,
theta = 10,
alpha = 0.3,
vstep = 0.1,
vp = 1,
nn = rep(20, ns),
tt = 0:(ns - 1)

)

Arguments

ns number of populations in the sequence

anc ancestral phenotype

theta OU optimum (long-term mean)

alpha strength of attraction to the optimum

vstep step variance

vp phenotypic variance of each sample

nn vector of sample sizes

tt vector of sample times (ages)

Details

This function simulates an Ornstein-Uhlenbeck (OU) process. In microevolutionary terms, this
models a population ascending a nearby peak in the adaptive landscape. The optimal trait value
is theta, alpha indicates the strength of attraction to that peak (= strength of stabilizing selection
around theta), vstep measures the random walk component (from genetic drift) and anc is the
trait value at the start of the sequence.
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Value

a paleoTS object

References

Hunt, G., M. A. Bell and M. P. Travis. 2008. Evolution toward a new adaptive optimum: phenotypic
evolution in a fossil stickleback lineage. Evolution 62(3): 700-710.

See Also

opt.joint.OU

Examples

x1 <- sim.OU(alpha = 0.8) # strong alpha
x2 <- sim.OU(alpha = 0.1) # weaker alpha
plot(x1)
plot(x2, add = TRUE, col = "blue")

sim.punc Simulate a punctuated time-series

Description

Simulates punctuated trait evolution with punctuations that are rapid relative to the spacing of sam-
ples. In practice, the time-series is divided into two or more segments, each of which has its own
mean and variance.

Usage

sim.punc(
ns = c(10, 10),
theta = c(0, 1),
omega = rep(0, length(theta)),
nn = rep(30, sum(ns)),
tt = 0:(sum(ns) - 1),
vp = 1

)

Arguments

ns vector of the number of samples in each segment
theta vector of means, one for each segment
omega vector of variances, one for each segment.
nn vector of sample sizes, one for each population
tt vector of times (ages), one for each population
vp phenotypic variance within each population
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Details

Segments are separated by punctuations. Population means in the ith segment are drawn randomly
from a normal distribution with a mean equal to ith element of theta and variance equal to the ith
element of omega. The magnitudes of punctuations are determined by the differences in adjacent
theta values.

Value

a paleoTS object with the simulated time-series.

See Also

fitGpunc

Examples

x <- sim.punc(ns = c(15, 15), theta = c(0,3), omega = c(0.1, 0.1))
plot(x)

sim.sgs Simulate protracted punctuation

Description

This function simulates a punctuated change that is is protracted enough that it is captured by
multiple transitional populations. Trait evolution starts in stasis, shifts to a general random walk,
and then shifts back into stasis.

Usage

sim.sgs(
ns = c(20, 20, 20),
theta = 0,
omega = 1,
ms = 1,
vs = 0.1,
nn = rep(30, sum(ns)),
tt = 0:(sum(ns) - 1),
vp = 1

)

Arguments

ns vector with the number of samples in each segment

theta trait mean for initial stasis segment

omega trait variance for stasis segments
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ms step mean during random walk segment
vs step variance during random walk segment
nn vector of sample sizes for each population
tt vector of times (ages) for each population
vp phenotypic trait variance for each population

Details

Trait evolution proceeds in three segments: Stasis, General random walk, stasis (sgs). The initial
stasis segment has a mean of theta and variance omega before shifting in the second segment to
a general random walk with parameters ms and vs. Finally, the third segment is a return to stasis,
centered around the trait value of the last population of the random walk.

Value

a paleoTS object

Examples

x <- sim.sgs() # default values OK
plot(x)

sim.Stasis Simulate Stasis time-series for trait evolution

Description

Simulate Stasis time-series for trait evolution

Usage

sim.Stasis(
ns = 20,
theta = 0,
omega = 0,
vp = 1,
nn = rep(20, ns),
tt = 0:(ns - 1)

)

Arguments

ns number of populations in the sequence
theta mean of populations
omega variance among populations
vp phenotypic variance within populations
nn vector of population sample sizes
tt vector of population times (ages)
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Value

a paleoTS object

See Also

sim.GRW, sim.OU, as.paleoTS

Examples

x <- sim.Stasis(omega = 0.5, vp = 0.1)
w.sta <- fitSimple(x, model = "Stasis")
w.ss <- fitSimple(x, model = "StrictStasis")
compareModels(w.sta, w.ss)

sim.Stasis.RW Simulate trait evolution with a mode shift

Description

Trait evolution is modeled as a shift from a random walk (general or unbiased) to stasis, or vice
versa.

Usage

sim.Stasis.RW(
ns = c(20, 20),
order = c("Stasis-RW", "RW-Stasis"),
anc = 0,
omega = 1,
ms = 0,
vs = 1,
vp = 1,
nn = 30,
tt = NULL

)

Arguments

ns vector of the number of samples in each segment
order whether stasis or random walk come first, one of "Stasis-RW" or "RW-Stasis"
anc starting trait value
omega variance of stasis segment
ms step mean during random walk segment
vs step variance during random walk segment
vp phenotypic trait variance for each population
nn vector of sample sizes for each population
tt vector of times (ages) for each population



50 std.paleoTS

Details

The anc argument is the starting trait value, and if the first segment is stasis, this is also the value of
the stasis mean. When the first segment is a random walk, the stasis mean in the second segment is
equal to the true trait mean at the end of the initial random walk.

Value

a paleoTSfit object

See Also

fitModeShift

Examples

x1 <- sim.Stasis.RW(omega = 0.1, ms = 5, order = "Stasis-RW")
x2 <- sim.Stasis.RW(omega = 0.1, ms = 5, order = "RW-Stasis")
plot(x1)
plot(x2, add = TRUE, col = "blue")
abline(v = 19, lty=3)

std.paleoTS Convert time-series to standard deviation units

Description

Convert time-series to standard deviation units

Usage

std.paleoTS(y, center = c("mean", "start"))

Arguments

y a paleoTS object

center optional translation of time-series according to "mean" or "start"; see Details

Details

The standardization expresses each sample mean as the deviation from the overall mean, divided
by the pooled within-sample standard deviation. Sample variances are also divided by the pooled
sample variance.

Essentially, this converts paleontological time-series data into standard deviation units, similar to
the computation of evolutionary rates in haldanes. This operation does not change the relative fit
of models, but it does facilitate the comparison of parameter estimates across time-series of traits
measured in different units.
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If argument center = "start" the time-series is translated such that the trait mean of the first sample
is zero.

Value

the converted paleoTS object

Examples

x <- sim.Stasis(ns = 8, theta = 1, omega = 4, vp = 2)
xs <- std.paleoTS(x, center = "start")
plot(x, ylim = range(c(x$mm, xs$mm)))
plot(xs, col = "red", add = TRUE)
legend(x = "topright", c("unstandardized", "standardized"), lty=1, col=c("black", "red"), cex=0.7)

sub.paleoTS Subsample a paleontological time-series

Description

Subsampling is done according to the supplied logical vector or, if none is supplied, as a proportion
of samples, randomly chosen.

Usage

sub.paleoTS(y, ok = NULL, k = 0.1, reset.time = TRUE)

Arguments

y a paleoTS object

ok a logical vector, TRUE for populations to retain

k proportion of samples to retain, with the samples chosen randomly

reset.time if TRUE, resets the time so that the first population time is zero

Value

the sub-sampled paleoTS object

Examples

x <- sim.GRW(ns=20)
plot(x)
xs1 <- sub.paleoTS(x, k = 0.5)
plot(xs1, add = TRUE, col="green")
keep <- rep(c(TRUE, FALSE), 10)
xs2 <- sub.paleoTS(x, ok = keep)
plot(xs2, add = TRUE, col = "red")
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test.var.het Test for heterogeneity of variances among samples in a time-series

Description

Test for heterogeneity of variances among samples in a time-series

Usage

test.var.het(y, method = "Bartlett")

Arguments

y a paleoTS object

method test to use; currently only "Bartlett" is implemented

Value

a list with the test statistic, degrees of freedom, and p-value

Note

Most often, this function will be used to assess if it is reasonable to pool variances across samples
using pool.var. A significant result means that the null hypothesis of equal variances across sam-
ples is rejected. Even in this case, however, it may still be preferable to pool variances, at least for
some populations, if sample sizes are quite low.

References

Sokal, R. R and F. J. Rohlf. 1995. Biometry 3rd Ed.

See Also

pool.var

Examples

data(cantius_L)
test.var.het(cantius_L) # significant, but still may want to pool variances
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