
corHMM Dredge: Automatic model discovery

James D. Boyko

corHMM Dredge is a combination of regularization and parameter sharing optimization to optimize models
of discrete character evolution. Technical details can be found in Boyko (2024). This vignette will focus on a
simple use case.

Start by loading the data:
library(corHMM)

Loading required package: ape

Loading required package: nloptr

Loading required package: GenSA

data(primates)
phy <- multi2di(primates[[1]])
phy$edge.length <- phy$edge.length + 1e-7
data <- primates[[2]]

Now we run corHMMDredge. The function essentially attempts to fit various model structures automatically.
It is able to drop parameters and equate parameters depending on the parameter estimates from previous
fits. There is also a regularization term, which penalizes fast transition rates and encourages low rates. This
also encourages a sparser transition matrix, encouraging dredge to drop model parameters. Dredge will keep
running until the models are no longer improving (based on something like AIC).

We can set various hyper parameters but the most important things to note are the max.rate.cat, the pen.type,
and the lambda. For this run we are only going to be looking at a max.rate.cat of 1, the penalty type will be
l1, and lambda will be set to 1. l1 as the regularization type means that high rates will be penalized and
setting lambda to 1 means that it will be a full penalization. Now lambda is not like most parameters in
our model in the sense that it cannot be optimized in the standard likelihood search. Instead, we use cross
validation which will be run after we fit a set of dredge models.
dredge_fits <- corHMMDredge(phy = phy, data = data, max.rate.cat = 1, pen.type = "l1", root.p = "maddfitz", lambda = 1, nstarts = 10, n.cores = 10)

Begining dredge...
##
AIC: 101.5139
Mapping matrix:
0|0 1|0 0|1 1|1
0|0 NA 3 5 NA
1|0 1 NA NA 7
0|1 2 NA NA 8
1|1 NA 4 6 NA
##
* Continuing dredge *
##
AIC: 93.51388
Mapping matrix:

1

0|0 1|0 0|1 1|1
0|0 NA NA 2 NA
1|0 NA NA NA NA
0|1 1 NA NA 4
1|1 NA NA 3 NA
##
* * Continuing dredge * *
##
AIC: 91.5828
Mapping matrix:
0|0 1|0 0|1 1|1
0|0 NA NA 3 NA
1|0 NA NA NA NA
0|1 1 NA NA 2
1|1 NA NA 3 NA
##
* * * Continuing dredge * * *
##
AIC: 90.11056
Mapping matrix:
0|0 1|0 0|1 1|1
0|0 NA NA 2 NA
1|0 NA NA NA NA
0|1 1 NA NA 2
1|1 NA NA 2 NA
##
* * * * Continuing dredge * * * *
##
AIC: 92.11887
Mapping matrix:
0|0 1|0 0|1 1|1
0|0 NA NA 1 NA
1|0 NA NA NA NA
0|1 1 NA NA 1
1|1 NA NA 1 NA
##
Done.

model_table <- getModelTable(dredge_fits)

As the dredge runs, it will print an AIC value and the mapping matrix. The AIC value is what dredge uses
to determine if it should continue fitting models. The mapping matrix are the model structures that dredge
tried based on previous estimates. You can see that as the dredge continues the models become simpler and
it only stopped when the AIC difference was greater than 2.

To determine which model to use after dredge, we do not do any model averaging. These models are not
associated with biological hypotheses (though you can still make biological interpretations) and so the
multimodel approach is not appropriate (I make arguments for this in Boyko (2024)). Instead, we will just
find which model had the best AIC and use that!
model_table <- getModelTable(dredge_fits)
print(model_table)

np lnLik AIC dAIC AICwt
1 8 -42.75694 101.51388 11.403323 0.001644679
2 4 -42.75694 93.51388 3.403323 0.089796408

2

3 3 -42.79140 91.58280 1.472245 0.235823607
4 2 -43.05528 90.11056 0.000000 0.492358244
5 1 -45.05944 92.11887 2.008314 0.180377062

In this case, it’s the 4th model that has the best AIC value and that’s the one we will proceed with.
dredge_model <- dredge_fits[[which.min(model_table$dAIC)]]
print(dredge_model$index.mat)

0|0 1|0 0|1 1|1
0|0 NA NA 2 NA
1|0 NA NA NA NA
0|1 1 NA NA 2
1|1 NA NA 2 NA

Above I have printed out the optimized model structure. That’s all good, but now we have to optimize
lambda. We will use k-fold cross validation with phylogenetic sampling (again described in detail in Boyko
(2024)). We have to specify the corHMM model, the number of folds, and which lambda values we want to
evaluate. These scores are a measure of divergence from the known tip state. So lower values are better.
k_fold_res <- kFoldCrossValidation(dredge_model, k = 5, lambdas = c(0,0.25,0.5,0.75,1))

Evaluating lambda = 0
Fold 0 Score: 0.01443587
Fold 1 Score: 0.03165594
Fold 2 Score: 0.0284769
Fold 3 Score: 0.03303103
Fold 4 Score: 0.04880152
Average Cross-Validation Score: 0.03128025
Evaluating lambda = 0.25
Fold 0 Score: 0.01421111
Fold 1 Score: 0.03143803
Fold 2 Score: 0.02646486
Fold 3 Score: 0.03273638
Fold 4 Score: 0.04873756
Average Cross-Validation Score: 0.03071759
Evaluating lambda = 0.5
Fold 0 Score: 0.01403961
Fold 1 Score: 0.03125159
Fold 2 Score: 0.02414567
Fold 3 Score: 0.03252268
Fold 4 Score: 0.04868174
Average Cross-Validation Score: 0.03012826
Evaluating lambda = 0.75
Fold 0 Score: 0.01391095
Fold 1 Score: 0.03109008
Fold 2 Score: 0.02253771
Fold 3 Score: 0.03237341
Fold 4 Score: 0.04863398
Average Cross-Validation Score: 0.02970923
Evaluating lambda = 1
Fold 0 Score: 0.01381558
Fold 1 Score: 0.03094863
Fold 2 Score: 0.02152674
Fold 3 Score: 0.03227638
Fold 4 Score: 0.04859148

3

Average Cross-Validation Score: 0.02943176

As the cross validation runs, I print out the scores for each fold per lambda, and then give an average score
for each lambda. A more convenient way to look at this is in table form.
cv_table <- corHMM:::getCVTable(k_fold_res)
print(cv_table)

$score_table
Lambda:0 Lambda:0.25 Lambda:0.5 Lambda:0.75 Lambda:1
Fold:0 0.01443587 0.01421111 0.01403961 0.01391095 0.01381558
Fold:1 0.03165594 0.03143803 0.03125159 0.03109008 0.03094863
Fold:2 0.02847690 0.02646486 0.02414567 0.02253771 0.02152674
Fold:3 0.03303103 0.03273638 0.03252268 0.03237341 0.03227638
Fold:4 0.04880152 0.04873756 0.04868174 0.04863398 0.04859148
##
$avg_scores
Lambda:0 Lambda:0.25 Lambda:0.5 Lambda:0.75 Lambda:1
0.03128025 0.03071759 0.03012826 0.02970923 0.02943176

So here we can see the lowest error is for a Lambda of 1, which means we will proceed from here with lambda
of 1.

I have also implemented a profile likelihood function so that users can examine the shape of the likelihood
surface and find ridges if they are there. For range factor we are specifying how far away from the MLE we
are going to examine. So if the MLE is 1 and the range factor is 100 then the profile likelihood will search
between 1/100 to 1*100. The n_points is how many points between that range the profile likeihood will
examine.
profile_results_dredge <- get_batch_profile_lik(dredge_model, dredge = TRUE,

range_factor = 100, n_points = 50, verbose = TRUE, ncores = 10)

##
1 of 2 ...
2 of 2 ...

It prints out which parameter it’s examining. The model dredge found had two parameters, hence when we
plot our profile likelihood we will only see two graphs.
plot_batch_profile_lik(profile_results_dredge, , ylim = c(-80, -40), xlab = "", label_cex = 1, cex.main = 2)

4

θ1

−80

−70

−60

−50

−40

Lo
g−

Li
ke

lih
oo

d

MLE = 0.045

4.
5e

−0
4

4.
5e

−0
3

4.
5e

−0
2

4.
5e

−0
1

4.
5e

+0
0

θ2

−80

−70

−60

−50

−40

Lo
g−

Li
ke

lih
oo

d

MLE = 0.014

1.
4e

−0
4

1.
4e

−0
3

1.
4e

−0
2

1.
4e

−0
1

1.
4e

+0
0

The dashed line is the 95% confidence interval and the MLE is plotted with a blue dot. These are nice
likelihood surfaces with no indiciation of ridges!

As a bonus I want to show what would have happened if you just ran default corHMM without considering
alternative model structures. This is not as uncommon as you may think. There are plenty of cases where the
model fitting is really a nuisance parameter and people are just interested in an ancestral state reconstruciton
or something along those lines. So let’s run an ARD default model.
corhmm_model <- corHMM(phy, data, 1, model = "ARD", root.p = "maddfitz", collapse = FALSE, nstarts = 10, n.cores = 10)

State distribution in data:
States: 0|0 1|0 0|1 1|1
Counts: 29 0 10 21
Beginning thorough optimization search -- performing 10 random restarts
Finished. Inferring ancestral states using marginal reconstruction.

If we look at the model results, there is nothing untoward. The likelihood value seems fine, the parameter
estimates are okay, so we could probably be pretty happy continuing with this for any downstream analysis.
Right?
print(corhmm_model$loglik)

[1] -41.32702

print(corhmm_model$solution)

0|0 1|0 0|1 1|1
0|0 NA 1e-09 0.007673625 NA
1|0 0.000000001 NA NA 0.183115793
0|1 0.083599086 NA NA 0.000000001
1|1 NA 1e-09 0.026797328 NA

So let’s use this for our downstream ASR and compare it to the model corHMMDredge found.

5

piecolors <- RColorBrewer::brewer.pal(4, "Paired")
par(mar=c(.1,.1,.1,.1), mfrow=c(1,2))
plot(dredge_model$phy, show.tip.label = FALSE)
tiplabels(pie = dredge_model$tip.states, cex=0.5, piecol = piecolors)
nodelabels(pie = dredge_model$states, piecol = piecolors)
legend("topleft", legend = colnames(dredge_model$states),

pch=21, pt.bg = piecolors, cex = 0.75, bty="n", title = "")
text(x = -1, y = 61.5, label = "Estrus display | Multimale mating",

cex = 0.75, adj=0)
plot(corhmm_model$phy, show.tip.label = FALSE, direction = "leftwards")
tiplabels(pie = corhmm_model$tip.states, cex=0.5, piecol = piecolors)
nodelabels(pie = corhmm_model$states, piecol = piecolors)

0|0
1|0
0|1
1|1

Estrus display | Multimale mating

These are pretty different. . . The left shows the corHMM Dredge result and the right is the standard ARD
model. I go into some of the differences in Boyko (2024), but these are biologically meaningful in the sense
that it changes the interpretation drastically. This hopefully will convince you of the importance of searching
for a good model structure. I don’t even necessarily mean using Dredge, I mean it is worth considering many
possible models not just the default settings. Dredge is just there to make our lives easier in cases where the
biology is maybe not clear, or we’re just interested in find the absolute best model structure. Let’s take this
further and examine the ARD model a bit more.

We will start with the profile likeihood. Here I’m just going to drop all of those parameter estimates which
were super low, since they aren’t doing much and it will be easier to visualize the output
to_drop <- corhmm_model$index.mat[which(corhmm_model$solution < 1e-8)]
corhmm_model$index.mat <- dropStateMatPars(corhmm_model$index.mat, to_drop)
profile_results_corhmm <- get_batch_profile_lik(corhmm_model, dredge = FALSE,

range_factor = 100, n_points = 50, verbose = TRUE, ncores = 10)

6

##
1 of 4 ...
2 of 4 ...
3 of 4 ...
4 of 4 ...

And now we plot. . .
plot_batch_profile_lik(profile_results_corhmm, ylim = c(-80, -40), xlab = "", label_cex = 1.25, cex.main = 2.3)

θ1

−80
−70
−60
−50
−40

Lo
g−

Li
ke

lih
oo

d

MLE = 0.084

8.
4e

−0
4

8.
4e

−0
3

8.
4e

−0
2

8.
4e

−0
1

8.
4e

+0
0

θ2

−80
−70
−60
−50
−40

Lo
g−

Li
ke

lih
oo

d

MLE = 0.008

7.
7e

−0
5

7.
7e

−0
4

7.
7e

−0
3

7.
7e

−0
2

7.
7e

−0
1

θ3

−80
−70
−60
−50
−40

Lo
g−

Li
ke

lih
oo

d

MLE = 0.027

2.
7e

−0
4

2.
7e

−0
3

2.
7e

−0
2

2.
7e

−0
1

2.
7e

+0
0

θ4

−80
−70
−60
−50
−40

Lo
g−

Li
ke

lih
oo

d

MLE = 0.183

1.
8e

−0
3

1.
8e

−0
2

1.
8e

−0
1

1.
8e

+0
0

1.
8e

+0
1

Uh oh. If you wondered what I meant by ridge above, there you go. Parameter 2 and 4 show clear ridges
and even 1 has a ridge extending far to the right. It looks like there are MANY values within the 95%
confidence intervals. And these values are really far apart so we are really uncertain about what the true
value is. And if you’re wondering if this has downstream consequences, the weird answer is that it depends.
The ancestral state reconstruction for any values within the 95% are actually pretty consistent. But the
difference in biological interpretation between a rate of 0.01 transition per million years and 100 transitions
per million years is pretty massive.

I’ll show you what I mean by the ASR not being as influenced as I’d have expected. Parameter 4 has a
likelihood ridge extending far to the right. So let’s sample one of those points and multiply that rate by 1000.
So we’re going from a rate of 0.18 to 183!! Surely that will impact the ancestral state reconstruction right?
p <- corhmm_model$solution[!is.na(corhmm_model$index.mat)]
p[4] <- p[4]*1000
corhmm_model_3 <- corHMM(phy, data, 1, root.p = "maddfitz", collapse = FALSE, rate.mat = corhmm_model$index.mat, p = p)

State distribution in data:
States: 0|0 1|0 0|1 1|1
Counts: 29 0 10 21
Calculating likelihood from a set of fixed parameters
Finished. Inferring ancestral states using marginal reconstruction.

7

Now we plot.
piecolors <- RColorBrewer::brewer.pal(4, "Paired")
par(mar=c(.1,.1,.1,.1), mfrow=c(1,2))
plot(corhmm_model_3$phy, show.tip.label = FALSE)
tiplabels(pie = corhmm_model_3$tip.states, cex=0.5, piecol = piecolors)
nodelabels(pie = corhmm_model_3$states, piecol = piecolors)
legend("topleft", legend = colnames(corhmm_model_3$states),

pch=21, pt.bg = piecolors, cex = 0.75, bty="n", title = "")
text(x = -1, y = 61.5, label = "Estrus display | Multimale mating",

cex = 0.75, adj=0)

plot(corhmm_model$phy, show.tip.label = FALSE, direction = "leftwards")
tiplabels(pie = corhmm_model$tip.states, cex=0.5, piecol = piecolors)
nodelabels(pie = corhmm_model$states, piecol = piecolors)

0|0
1|0
0|1
1|1

Estrus display | Multimale mating

To the left we see the results of the high rates version. And to the right we see the results of the standard fit.
There really is not much difference between the two. Despite having a transition rate 1000x faster. This
really surprised me, but it’s interesting. So it seems that model structure is more important for ASR than
the rate estimates.

8

