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This document clari�es the use of Moran's autocorrelation coe�cient to quantify whether
the distribution of a trait among a set of species is a�ected or not by their phylogenetic
relationships.

1 Theoretical Background

Moran's autocorrelation coe�cient (often denoted as I) is an extension of Pearson product-
moment correlation coe�cient to a univariate series [2, 5]. Recall that Pearson's correlation
(denoted as ρ) between two variables x and y both of length n is:

ρ =

n∑
i=1

(xi − x̄)(yi − ȳ)

[
n∑

i=1

(xi − x̄)2
n∑

i=1

(yi − ȳ)2

]1/2
,

where x̄ and ȳ are the sample means of both variables. ρ measures whether, on average, xi

and yi are associated. For a single variable, say x, I will measure whether xi and xj , with
i ̸= j, are associated. Note that with ρ, xi and xj are not associated since the pairs (xi, yi)
are assumed to be independent of each other.

In the study of spatial patterns and processes, we may logically expect that close obser-
vations are more likely to be similar than those far apart. It is usual to associate a weight

to each pair (xi, xj) which quanti�es this [3]. In its simplest form, these weights will take
values 1 for close neighbours, and 0 otherwise. We also set wii = 0. These weights are
sometimes referred to as a neighbouring function.

I's formula is:
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I =
n

S0

n∑
i=1

n∑
j=1

wij(xi − x̄)(xj − x̄)

n∑
i=1

(xi − x̄)2
, (1)

where wij is the weight between observation i and j, and S0 is the sum of all wij 's:

S0 =

n∑
i=1

n∑
j=1

wij .

Quite not so intuitively, the expected value of I under the null hypothesis of no auto-
correlation is not equal to zero but given by I0 = −1/(n− 1). The expected variance of I0
is also known, and so we can make a test of the null hypothesis. If the observed value of I
(denoted Î) is signi�cantly greater than I0, then values of x are positively autocorrelated,
whereas if Î < I0, this will indicate negative autocorrelation. This allows us to design one-
or two-tailed tests in the standard way.

Gittleman & Kot [4] proposed to use Moran's I to test for �phylogenetic e�ects�. They
considered two ways to calculate the weights w:

� With phylogenetic distances among species, e.g., wij = 1/dij , where dij are distances
measured on a tree.

� With taxonomic levels where wij = 1 if species i and j belong to the same group, 0
otherwise.

Note that in the �rst situation, there are quite a lot of possibilities to set the weights.
For instance, Gittleman & Kot also proposed:

wij = 1/dαij if dij ≤ c
wij = 0 if dij > c,

where c is a cut-o� phylogenetic distance above which the species are considered to have
evolved completely independently, and α is a coe�cient (see [4] for details). By analogy to
the use of a spatial correlogram where coe�cients are calculated assuming di�erent sizes of
the �neighbourhood� and then plotted to visualize the spatial extent of autocorrelation, they
proposed to calculate I at di�erent taxonomic levels.

2 Implementation in ape

From version 1.2-6, ape has functions Moran.I and correlogram.formula implementing the
approach developed by Gittleman & Kot. There was an error in the help pages of ?Moran.I
(corrected in ver. 2.1) where the weights were referred to as �distance weights�. This has
been wrongly interpreted in my book [6, pp. 139�142]. The analyses below aim to correct
this.

2.1 Phylogenetic Distances

The data, taken from [1], are the log-transformed body mass and longevity of �ve species of
primates:

> body <- c(4.09434, 3.61092, 2.37024, 2.02815, -1.46968)

> longevity <- c(4.74493, 3.3322, 3.3673, 2.89037, 2.30259)

> names(body) <- names(longevity) <- c("Homo", "Pongo", "Macaca",

+ "Ateles", "Galago")
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The tree has branch lengths scaled so that the root age is one. We read the tree with
ape, and plot it:

> library(ape)

> trnwk <- "((((Homo:0.21,Pongo:0.21):0.28,Macaca:0.49):0.13,Ateles:0.62)"

> trnwk[2] <- ":0.38,Galago:1.00);"

> tr <- read.tree(text = trnwk)

> plot(tr)

> axisPhylo()

Homo

Pongo

Macaca

Ateles

Galago

1 0.8 0.6 0.4 0.2 0

We choose the weights as wij = 1/dij , where the d's is the distances measured on the
tree:

> w <- 1/cophenetic(tr)

> w

Homo Pongo Macaca Ateles Galago

Homo Inf 2.3809524 1.0204082 0.8064516 0.5

Pongo 2.3809524 Inf 1.0204082 0.8064516 0.5

Macaca 1.0204082 1.0204082 Inf 0.8064516 0.5

Ateles 0.8064516 0.8064516 0.8064516 Inf 0.5

Galago 0.5000000 0.5000000 0.5000000 0.5000000 Inf

Of course, we must set the diagonal to zero:

> diag(w) <- 0

We can now perform the analysis with Moran's I:

> Moran.I(body, w)
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$observed

[1] -0.07312179

$expected

[1] -0.25

$sd

[1] 0.08910814

$p.value

[1] 0.04714628

Not surprisingly, the results are opposite to those in [6] since, there, the distances (given
by cophenetic(tr)) were used as weights. (Note that the argument dist has been since
renamed weight.1) We can now conclude for a slighly signi�cant positive phylogenetic
correlation among body mass values for these �ve species.

The new version of Moran.I gains the option alternative which speci�es the alternative
hypothesis ("two-sided" by default, i.e., H1: I ̸= I0). As expected from the above result,
we divide the P -value be two if we de�ne H1 as I > I0:

> Moran.I(body, w, alt = "greater")

$observed

[1] -0.07312179

$expected

[1] -0.25

$sd

[1] 0.08910814

$p.value

[1] 0.02357314

The same analysis with longevity gives:

> Moran.I(longevity, w)

$observed

[1] -0.1837739

$expected

[1] -0.25

$sd

[1] 0.09114549

$p.value

[1] 0.4674727

1The older code was actually correct; nevertheless, it has been rewritten, and is now much faster. The

documentation has been clari�ed. The function correlogram.phylo, which computed Moran's I for a tree

given as argument using the distances among taxa, has been removed.
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As for body, the results are nearly mirrored compared to [6] where a non-signi�cant
negative phylogenetic correlation was found: it is now positive but still largely not signi�cant.

2.2 Taxonomic Levels

The function correlogram.formula provides an interface to calculate Moran's I for one or
several variables giving a series of taxonomic levels. An example of its use was provided in [6,
pp. 141�142]. The code of this function has been simpli�ed, and the graphical presentation
of the results have been improved.

correlogram.formula's main argument is a formula which is �sliced�, and Moran.I is
called for each of these elements. Two things have been changed for the end-user at this
level:

1. In the old version, the rhs of the formula was given in the order of the taxonomic hi-
erarchy: e.g., Order/SuperFamily/Family/Genus. Not respecting this order resulted
in an error. In the new version, any order is accepted, but the order given is then
respected when plotted the correlogram.

2. Variable transformations (e.g., log) were allowed on the lhs of the formula. Because
of the simpli�cation of the code, this is no more possible. So it is the responsibility of
the user to apply any tranformation before the analysis.

Following Gittleman & Kot [4], the autocorrelation at a higher level (e.g., family) is
calculated among species belonging to the same category and to di�erent categories at the
level below (genus). To formalize this, let us write the di�erent levels asX1/X2/X3/ . . . /Xn

with Xn being the lowest one (Genus in the above formula):

wij = 1 if Xk
i = Xk

j and Xk+1
i ̸= Xk+1

j

wij = 0 otherwise

}
k < n

wij = 1 if Xk
i = Xk

j

wij = 0 otherwise

}
k = n

This is thus di�erent from the idea of a �neighbourhood� of di�erent sizes, but rather similar
to the idea of partial correlation where the in�uence of the lowest level is removed when
considering the highest ones [4].

To repeat the analyses on the carnivora data set, we �rst log10-transform the variables
mean body mass (SW) and the mean female body mass (FW):

> data(carnivora)

> carnivora$log10SW <- log10(carnivora$SW)

> carnivora$log10FW <- log10(carnivora$FW)

We �rst consider a single variable analysis (as in [6]):

> fm1.carn <- log10SW ~ Order/SuperFamily/Family/Genus

> co1 <- correlogram.formula(fm1.carn, data = carnivora)

> plot(co1)
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A legend now appears by default, but can be removed with legend = FALSE. Most
of the appearance of the graph can be customized via the option of the plot method (see
?plot.correlogram for details). This is the same analysis than the one displayed on Fig. 6.3
of [6].

When a single variable is given in the lhs in correlogram.formula, an object of class
"correlogram" is returned as above. If several variables are analysed simultaneously, the
object returned is of class "correlogramList", and the correlograms can be plotted together
with the appropriate plot method:

> fm2.carn <- log10SW + log10FW ~ Order/SuperFamily/Family/Genus

> co2 <- correlogram.formula(fm2.carn, data = carnivora)

> print(plot(co2))
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By default, lattice is used to plot the correlograms on separate panels; using lattice

= FALSE (actually the second argument, see ?plot.correlogramList) makes a standard
graph superimposing the di�erent correlograms:

> plot(co2, FALSE)
−
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The options are roughly the same than above, but do not have always the same e�ect
since lattice and base graphics do not have the same graphical parameters. For instance,
legend = FALSE has no e�ect if lattice = TRUE.

3 Implementation in ade4

The analysis done with ade4 in [6] su�ers from the same error than the one done with
Moran.I since it was also done with a distance matrix. So I correct this below:

> library(ade4)

> gearymoran(w, data.frame(body, longevity))

class: krandtest

Monte-Carlo tests

Call: as.krandtest(sim = matrix(res$result, ncol = nvar, byr = TRUE),

obs = res$obs, alter = alter, names = test.names)

Test number: 2

Permutation number: 999

Alternative hypothesis: greater

Test Obs Std.Obs Pvalue

1 body -0.06256789 2.1523342 0.001

2 longevity -0.22990437 0.3461414 0.414
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other elements: NULL

The results are wholly consistent with those from ape, but the estimated coe�cients are
substantially di�erent. This is because the computational methods are not the same in both
packages. In ade4, the weight matrix is �rst transformed as a relative frequency matrix with
w̃ij = wij/S0. The weights are further transformed with:

pij = w̃ij −
n∑

i=1

w̃ij

n∑
j=1

w̃ij ,

with pij being the elements of the matrix denoted as P . Moran's I is �nally computed with
xTPx. In ape, the weights are �rst row-normalized:

wij

/ n∑
i=1

wij ,

then eq. 1 is applied.
Another di�erence between both packages, though less important, is that in ade4 the

weight matrix is forced to be symmetric with (W +WT)/2. In ape, this matrix is assumed
to be symmetric, which is likely to be the case like in the examples above.

4 Other Implementations

Package sp has several functions, including moran.test, that are more speci�cally targeted
to the analysis of spatial data. Package spatial has the function correlogram that computes
and plots spatial correlograms.
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