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TreEvo-package TreEvo–abc for comparative methods

Description

A package for applying Approximate Bayesian Computation to estimating parameters of trait evo-
lution in comparative analyses.

Details

Package: TreEvo
Type: Package
Version: 0.3.3
Date: 2012-07-02
License: GPL
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Author(s)

Brian O’Meara, Barb L. Banbury, David W. Bapst

Maintainer: David Bapst <dwbapst@gmail.com>

Examples

# example analysis, using data simulated with TreEvo

set.seed(1)
# let's simulate some data, and then try to infer the parameters using ABC
# get a 20-taxon coalescent tree
tree <- rcoal(20)
# get realistic edge lengths
tree$edge.length <- tree$edge.length*20

genRateExample <- c(0.01)
ancStateExample <- c(10)

#Simple Brownian motion
simCharExample <- doSimulation(

phy = tree,
intrinsicFn = brownianIntrinsic,
extrinsicFn = nullExtrinsic,
startingValues = ancStateExample, #root state
intrinsicValues = genRateExample,
extrinsicValues = c(0),
generation.time = 100000
)

# NOTE: the example analyses below sample too few particles,
# over too few steps, with too few starting simulations
# - all for the sake of examples that reasonably test the functions

# Please set these values to more realistic levels for your analyses!

resultsBMExample <- doRun_prc(
phy = tree,
traits = simCharExample,
intrinsicFn = brownianIntrinsic,
extrinsicFn = nullExtrinsic,
startingPriorsFns = "normal",
startingPriorsValues = list(c(mean(simCharExample[, 1]), sd(simCharExample[, 1]))),
intrinsicPriorsFns = c("exponential"),
intrinsicPriorsValues = list(10),
extrinsicPriorsFns = c("fixed"),
extrinsicPriorsValues = list(0),
generation.time = 100000,
nRuns = 2,
nStepsPRC = 3,
numParticles = 20,
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nInitialSimsPerParam = 10,
jobName = "examplerun_prc",
stopRule = FALSE,
multicore = FALSE,
coreLimit = 1
)

boxcoxTransformation Box-Cox Transformation for Simulation Summary Values

Description

boxcoxTransformation Box-Cox transforms summary values from a single simulation, while
boxcoxTransformationMatrix Box-Cox transforms summary values from multiple simulations.
The output of boxcoxTransformationMatrix needs to be provided as input for boxcoxTransformation.

Usage

boxcoxTransformation(summaryValuesVector, boxcoxAddition, boxcoxLambda)

boxcoxTransformationMatrix(summaryValuesMatrix)

Arguments

summaryValuesVector

Vector of summary statistics from a single simulation

boxcoxAddition Vector of boxcox additions from boxcoxTransformationMatrix

boxcoxLambda Vector of boxcox lambda values from boxcoxTransformationMatrix

summaryValuesMatrix

Matrix of summary statistics from simulations

Value

boxcoxTransformation returns a vector of Box-Cox transformed summary statistics from a single
observation. boxcoxTransformationMatrix returns a matrix of Box-Cox transformed summary
statistics with the same dimensions as summaryValuesMatrix.

Author(s)

Brian O’Meara and Barb Banbury
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Examples

set.seed(1)
data(simRunExample)

# example simulation

simDataParallel <- parallelSimulateWithPriors(
nrepSim = 5,
multicore = FALSE,
coreLimit = 1,
phy = simPhyExample,
intrinsicFn = brownianIntrinsic,
extrinsicFn = nullExtrinsic,
startingPriorsFns = "normal",
startingPriorsValues = list(c(

mean(simCharExample[, 1]), sd(simCharExample[, 1]))),
intrinsicPriorsFns = c("exponential"),
intrinsicPriorsValues = list(10),
extrinsicPriorsFns = c("fixed"),
extrinsicPriorsValues = list(0),
generation.time = 100000,
checkpointFile = NULL,
checkpointFreq = 24,
verbose = FALSE,
freevector = NULL, taxonDF = NULL)

nParFree <- sum(attr(simDataParallel, "freevector"))

# separate the simulation results:
# 'true' generating parameter values from the summary values

summaryValuesMat <- simDataParallel[, -1:-nParFree]

boxTranMat <- boxcoxTransformationMatrix(
summaryValuesMatrix = summaryValuesMat
)

boxTranMat

boxcoxTransformation(
summaryValuesVector = summaryValuesMat[, 1],
boxcoxAddition = boxTranMat$boxcoxAddition,
boxcoxLambda = boxTranMat$boxcoxLambda
)

compareListIPD Plot Interparticle Distance between Runs

Description

This function plots interparticle distance (IPD) between runs for each free parameter.
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Usage

compareListIPD(particleDataFrameList, verbose = FALSE)

Arguments

particleDataFrameList

A list composed of multiple particleDataFrame objects, as output by doRun
functions.

verbose Commented screen output.

Value

Produces a plot with IPD between runs per generation.

Author(s)

Brian O’Meara and Barb Banbury

Examples

data(simRunExample)

pdfList <- list(resultsBMExample[[1]]$particleDataFrame,
resultsBoundExample[[1]]$particleDataFrame)

compareListIPD(particleDataFrameList = pdfList, verbose = TRUE)

doRun Run Approximate Bayesian Computation for Phylogenetic Compara-
tive Methods

Description

The doRun functions are the main interface for TreEvo users to do Approximate Bayesian Com-
putation (ABC) analysis, effectively wrapping the simulateWithPriors functions to perform sim-
ulations, which themselves are wrappers for the doSimulation function. The two current doRun
functions are doRun_prc which applies a partial rejection control (PRC) ABC analysis over multiple
generations of simulations, and doRun_rej which performs a full rejection (’rej’) ABC analysis.

Usage

doRun_prc(
phy,
traits,
intrinsicFn,
extrinsicFn,
startingPriorsValues,
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startingPriorsFns,
intrinsicPriorsValues,
intrinsicPriorsFns,
extrinsicPriorsValues,
extrinsicPriorsFns,
numParticles = 300,
nStepsPRC = 5,
nRuns = 2,
nInitialSims = NULL,
nInitialSimsPerParam = 100,
generation.time = 1000,
TreeYears = max(branching.times(phy)) * 1e+06,
multicore = FALSE,
coreLimit = NA,
multicoreSuppress = FALSE,
standardDevFactor = 0.2,
epsilonProportion = 0.7,
epsilonMultiplier = 0.7,
validation = "CV",
scale = TRUE,
variance.cutoff = 95,
stopRule = FALSE,
stopValue = 0.05,
maxAttempts = Inf,
diagnosticPRCmode = FALSE,
jobName = NA,
saveData = FALSE,
verboseParticles = TRUE

)

doRun_rej(
phy,
traits,
intrinsicFn,
extrinsicFn,
startingPriorsValues,
startingPriorsFns,
intrinsicPriorsValues,
intrinsicPriorsFns,
extrinsicPriorsValues,
extrinsicPriorsFns,
generation.time = 1000,
TreeYears = max(branching.times(phy)) * 1e+06,
multicore = FALSE,
coreLimit = NA,
validation = "CV",
scale = TRUE,
nInitialSims = NULL,
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nInitialSimsPerParam = 100,
variance.cutoff = 95,
standardDevFactor = 0.2,
jobName = NA,
abcTolerance = 0.1,
checkpointFile = NULL,
checkpointFreq = 24,
savesims = FALSE

)

Arguments

phy A phylogenetic tree, in package ape’s phylo format.

traits Data matrix with rownames identical to phy@tip.label. If a vector, traits
will be coerced to a matrix, with element names as rownames.

intrinsicFn Name of (previously-defined) function that governs how traits evolve within a
lineage, regardless of the trait values of other taxa.

extrinsicFn Name of (previously-defined) function that governs how traits evolve within a
lineage, based on their own (’internal’) trait vlaue and the trait values of other
taxa.

startingPriorsValues

A list of the same length as the number of prior distributions specified in startingPriorsFns
(for starting values, this should be one prior function specified for each trait -
thus one for most univariate trait analyses), with each element of the list a vector
the same length as the appropriate number of parameters for that prior distribu-
tion (1 for "fixed", 2 for "uniform", 2 for "normal", 2 for "lognormal", 2
for "gamma", 1 for "exponential").

startingPriorsFns

Vector containing names of prior distributions to use for root states: can be one
of "fixed", "uniform", "normal", "lognormal", "gamma", "exponential".

intrinsicPriorsValues

A list of the same length as the number of prior distributions specified in intrinsicPriorsFns
(one prior function specified for each parameter in the intrinsic model), with
each element of the list a vector the same length# as the appropriate number
of parameters for that prior distribution (1 for "fixed", 2 for "uniform", 2 for
"normal", 2 for "lognormal", 2 for "gamma", 1 for "exponential").

intrinsicPriorsFns

Vector containing names of prior distributions to use for intrinsic function pa-
rameters: can be one of "fixed", "uniform", "normal", "lognormal", "gamma",
"exponential".

extrinsicPriorsValues

A list of the same length as the number of prior distributions specified in extrinsicPriorsFns
(one prior function specified for each parameter in the extrinsic model), with
each element of the list a vector the same length as the appropriate number of
parameters for that prior distribution (1 for "fixed", 2 for "uniform", 2 for
"normal", 2 for "lognormal", 2 for "gamma", 1 for "exponential").
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extrinsicPriorsFns

Vector containing names of prior distributions to use for extrinsic function pa-
rameters: can be one of "fixed", "uniform", "normal", "lognormal", "gamma",
"exponential".

numParticles Number of accepted particles per PRC generation.
nStepsPRC Number of PRC generations to run.
nRuns Number of independent PRC runs to be performed, each consisting of indepen-

dent sets of initial simulations and PRC generations. Note that runs are run
sequentially, and not in parallel, as the generation of particles within each run
makes use of the multicore functionality. If nRuns is greater than 1, the out-
put from doRun_prc will be a list object composed of multiple output lists, as
described.

nInitialSims Number of initial simulations used to calibrate particle rejection control algo-
rithm. If not given, this will be a function of the number of freely varying
parameters.

nInitialSimsPerParam

If nInitialSims is not given by the user, the number of initial simulations per-
formed to calibrate the particle rejection algorithm will instead be the number
of free parameters in the model multiplied by nInitialSimsPerParam.

generation.time

The number of years per generation. This sets the coarseness of the simula-
tion; if it’s set to 1000, for example, the population’s trait values change every
1000 calendar years. Note that this is in calendar years (see description for ar-
gument TreeYears), and not in millions of years (as is typical for dated trees
in macroevolutionary studies). Thus, if a branch is 1 million-year time-unit
long, and a user applies the default generation.time = 1000, then 1000 evo-
lutionary changes will be simulated along that branch. See documentation for
doSimulation for further details.

TreeYears The amount of calendar time from the root to the furthest tip. Most trees in
macroevolutionary studies are dated with branch lengths in units of millions of
years, and thus the default for this argument is max(branching.times(phy))
* 1e6. If your tree has the most recent tip at time zero (i.e., the modern day),
this would be the same as the root age of the tree. If your branch lengths are
not in millions of years, you should alter this argument. Otherwise, leave this
argument alone. See documentation for doSimulation for further details.

multicore Whether to use multicore, default is FALSE. If TRUE, one of two suggested pack-
ages must be installed, either doMC (for UNIX systems) or doParallel (for
Windows), which are used to activate multithreading. If neither package is in-
stalled, this function will fail if multicore = TRUE.

coreLimit Maximum number of cores to be used.
multicoreSuppress

This argument suppresses the multicore code and will apply a plain vanilla se-
rial for() loop instead of doPar. Mainly to be used for developer diagnostic
purposes.

standardDevFactor

Standard deviation for mutating states each time a new particle is generated in a
PRC generation.
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epsilonProportion

Sets tolerance for initial simulations.
epsilonMultiplier

Sets tolerance on subsequent PRC generations.

validation Character argument controlling what validation procedure is used by plsr. De-
fault is "CV" for cross-validation.

scale This argument is passed to plsr. It may be a numeric vector, or logical. If nu-
meric vector, the input is scaled by dividing each variable with the corresponding
element of scale. If scale = TRUE, the inpus is scaled by dividing each variable
by its sample standard deviation. If cross-validation is selected (the default for
returnPLSModel), scaling by the standard deviation is done for every segment.

variance.cutoff

Minimum threshold percentage of variance explained for the number of compo-
nents included in the final PLS model fit. This value is a percentage and must
be between 0 and 100. Default is 95 percent.

stopRule If TRUE, an analysis will be terminated prior to set number of generations if the
ratio of all parameters from one generation to the next falls below the stopValue.

stopValue Threshold value for terminating an analysis prior to nStepesPRC.

maxAttempts Maximum number attempts made in while loop within the PRC algorithm. If
reached, the algorithm will terminate with an error message. By default, this is
infinite, and thus there is no effective limit without user intervention.

diagnosticPRCmode

If TRUE (not the default), the function will be very noisy about characteristics of
the PRC algorithm as it runs.

jobName Optional job name.

saveData Option to save various run information during the analysis, including summary
statistics from analyses, output to external .Rdata and .txt files.

verboseParticles

If TRUE (the default), a large amount of information about parameter estimates
and acceptance of particles is output to console via message as doRun_prc runs.

abcTolerance Proportion of accepted simulations.

checkpointFile Optional file name for checkpointing simulations.

checkpointFreq Saving frequency for checkpointing.

savesims Option to save individual simulations, output to a .Rdata file.

Details

Both doRun functions take an input phylogeny (phy), observed trait data set (traits), models
(intrinsicFn, extrinsicFn), and priors (startingPriorsValues, startingPriorsFns, intrinsicPriorsValues,
intrinsicPriorsFns, extrinsicPriorsValues, extrinsicPriorsFns). Pulling from the priors,
it simulates an initial set of simulations (nInitialSims). This set of simulations is boxcox trans-
formed , and a PLS regression (see methodsPLS) is performed for each free parameter to determine
the most informative summary statistics (using variance.cutoff). The euclidean distance is cal-
culated between each each initial simulation’s most informative summary statistics and the input
observed data.



doRun 11

Following that step, the approach of the two functions diverge drastically.

For function doRun_rej, those simulations whose most informative summary statistics fall below
abcTolerance are kept as accepted ’particles’ (simulations runs), describing the posterior distribu-
tion of parameters. No additional generations of simulations are performed.

Coversely, function doRun_prc performs an ABC-PRC analysis, which follows a much more com-
plicated algorithm with additional generations. In PRC, tolerance is set based on epsilonProportion
and epsilonMultiplier, and the analysis begins with generation 1 and continues through a num-
ber of generations equal to nStepsPRC. Single simulation runs (’particles’) are accepted if the dis-
tance of the most informative summary stats to the original data is less than this tolerance. A
generation is complete when enough particles (numParticles) have been accepted. These particles
make up the distribution for the next generation. The accepted particles from the final generation
describe the posterior distributions of parameters.

Value

The output of these two functions are lists, composed of multiple objects, which differ slightly in
their content among the two functions. For doRun_prc, the output is:

input.data Input variables: jobName, nTaxa (number of taxa), nInitialSims, generation.time,
TreeYears, timeStep, totalGenerations, epsilonProportion, epsilonMultiplier, nRuns
(number of runs), nStepsPRC, numParticles, standardDevFactor.

priorList List of prior distributions. This is used for doing post-analysis comparisons between
prior and posterior distributions, such as with function plotPosteriors.

particleDataFrame DataFrame with information from each simulation, including generation, at-
tempt, id, parentid, distance, weight, and parameter states.

toleranceVector Final tolerance vector.

phy Input phylogeny.

traits Input traits.

simTime Processor time for initial simulations.

time.per.gen Processor time for subsequent generations.

postSummary Summarizes the posterior distribution from the final generation for all free param-
eters, giving the mean, standard deviation and Highest Posterior Density (at a 0.8 alpha) for
each parameter.

If nRuns is greater than 1, the output from doRun_prc will be a list object composed of multiple
output lists, as described.

For doRun_rej, the output is:

input.data Input variables: jobName, nTaxa (number of taxa), nInitialSims, generation.time,
TreeYears, timeStep, totalGenerations, epsilonProportion, epsilonMultiplier, nRuns
(number of runs), nStepsPRC, numParticles, standardDevFactor.

priorList List of prior distributions. This is used for doing post-analysis comparisons between
prior and posterior distributions, such as with function plotPosteriors.

phy Input phylogeny.

traits Input traits.
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trueFreeValuesANDSummaryValues Parameter estimates and summary stats from all sims.

simTime Processor time for simulations.

abcDistancesRaw Euclidean distances for each simulation and free parameter.

particleDataFrame DataFrame with information from each simulation, including generation, at-
tempt, id, parentid, distance, weight, and parameter states.

postSummary Summarizes the posterior distribution from the final generation for all free param-
eters, giving the mean, standard deviation and Highest Posterior Density (at a 0.8 alpha) for
each parameter.

parMeansList A list of parameter means for both fixed and unfixed parameters, sorted into a list
of three vectors (starting, intrinsic, extrinsic).

Author(s)

Brian O’Meara and Barb Banbury

References

Sisson et al. 2007, Wegmann et al. 2009

Examples

set.seed(1)
data(simRunExample)

# NOTE: the example analyses below sample too few particles,
# over too few steps, with too few starting simulations
# - all for the sake of examples that demonstrate these
# within a reasonable time-frame

## Please set these values to more realistic levels for your analyses!

resultsPRC <- doRun_prc(
phy = simPhyExample,
traits = simCharExample,
intrinsicFn = brownianIntrinsic,
extrinsicFn = nullExtrinsic,
startingPriorsFns = "normal",
startingPriorsValues = list(c(mean(simCharExample[, 1]),

sd(simCharExample[, 1]))),
intrinsicPriorsFns = c("exponential"),
intrinsicPriorsValues = list(10),
extrinsicPriorsFns = c("fixed"),
extrinsicPriorsValues = list(0),
generation.time = 10000,
nRuns = 2,
nStepsPRC = 3,
numParticles = 20,
nInitialSimsPerParam = 10,
jobName = "examplerun_prc",
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stopRule = FALSE,
multicore = FALSE,
coreLimit = 1
)

resultsPRC

#one should make sure priors are uniform with doRun_rej!

resultsRej <- doRun_rej(
phy = simPhyExample,
traits = simCharExample,
intrinsicFn = brownianIntrinsic,
extrinsicFn = nullExtrinsic,
startingPriorsFns = "normal",
startingPriorsValues = list(c(mean(simCharExample[, 1]),

sd(simCharExample[, 1]))),
intrinsicPriorsFns = c("exponential"),
intrinsicPriorsValues = list(10),
extrinsicPriorsFns = c("fixed"),
extrinsicPriorsValues = list(0),
generation.time = 10000,
jobName = "examplerun_rej",
abcTolerance = 0.05,
multicore = FALSE,
coreLimit = 1
)

resultsRej

doSimulation Discrete-Time Character Simulation

Description

The function doSimulation evolves continuous characters under a discrete time process. These
functions are mainly used as internal components, generating simulations within ABC analyses
using the doRun functions. See Note below.

Usage

doSimulation(
phy = NULL,
intrinsicFn,
extrinsicFn,
startingValues,
intrinsicValues,
extrinsicValues,



14 doSimulation

generation.time = 1000,
TreeYears = max(branching.times(phy)) * 1e+06,
timeStep = NULL,
returnAll = FALSE,
taxonDF = NULL,
checkTimeStep = TRUE

)

Arguments

phy A phylogenetic tree, in package ape’s phylo format.
intrinsicFn Name of (previously-defined) function that governs how traits evolve within a

lineage, regardless of the trait values of other taxa.
extrinsicFn Name of (previously-defined) function that governs how traits evolve within a

lineage, based on their own (’internal’) trait vlaue and the trait values of other
taxa.

startingValues State at the root.
intrinsicValues

Vector of values corresponding to the parameters of the intrinsic model.
extrinsicValues

Vector of values corresponding to the parameters of the extrinsic model.
generation.time

The number of years per generation. This sets the coarseness of the simula-
tion; if it’s set to 1000, for example, the population’s trait values change every
1000 calendar years. Note that this is in calendar years (see description for ar-
gument TreeYears), and not in millions of years (as is typical for dated trees
in macroevolutionary studies). Thus, if a branch is 1 million-year time-unit
long, and a user applies the default generation.time = 1000, then 1000 evo-
lutionary changes will be simulated along that branch. See documentation for
doSimulation for further details.

TreeYears The amount of calendar time from the root to the furthest tip. Most trees in
macroevolutionary studies are dated with branch lengths in units of millions of
years, and thus the default for this argument is max(branching.times(phy))
* 1e6. If your tree has the most recent tip at time zero (i.e., the modern day),
this would be the same as the root age of the tree. If your branch lengths are
not in millions of years, you should alter this argument. Otherwise, leave this
argument alone. See documentation for doSimulation for further details.

timeStep This value corresponds to the length of intervals between discrete evolutionary
events (’generations’) simulated along branches, relative to a rescaled tree where
the root to furthest tip distance is 1. For example, timeStep = 0.01 of would
mean 100 (i.e., 1 / 0.01) evolutionary changes would be expected to occur from
the root to the furthest tip. (Note that the real number simulated will be much
less, because simulations start over at each branching node.) Ideally, timeStep
(or its effective value, via other arguments) should be as short as is computation-
ally possible. Typically NULL by default and determined internally as follows:
timeStep = generation.time / TreeYears. Can be provided a value as an al-
ternative to using arguments generation.time and TreeYears, which would
then be overridden. See documentation for doSimulation for further details.
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returnAll If TRUE, the output returned is a data.frame containing the values at each node
from the simulation.

taxonDF A data.frame containing data on nodes (both tips and internal nodes) output
by various internal functions. Can be supplied as input to spead up repeated
calculations, but by default is NULL, which instead forces a calculation from
input phy.

checkTimeStep If TRUE, warnings will be issued if TimeStep is too short.

Details

The phylogenetic tree used is rescaled such that the distance from the root to the furthest tip is
rescaled to equal 1 time-unit, and it is this rescaled edge lengths to with arguments timeStep refers
to. Typically, this will be determined though as a ratio of TreeYears (which is the number of
calendar years constituing the root-to-furthest-tip distance, and is determined by default as if the
user had supplied a tree with edge lengths in time-units of 1 time-unit = 1 million years), and
generation.time, which gives the length of timeSteps in calendar years (e.g. generation.time
= 1000 means an evolutionary change in trait values every 1000 years). Note that the real number
of trait change events simulated may be less less, because simulations start over at each branching
node, but intervals between changes should be so fine that this should be negligible (related, the
results should be independent of your choice for generation.time or timeStep). We recommend
that the effective timeStep should be as short as is computationally possible. SaveRealParams is
useful for tracking the real true values if simulating data to test the performance of ABC analyses.
It is not useful for ABC analyses of empirical data.

Value

If returnAll = FALSE (the default), this function returns a data frame of species character (tip)
values in the tree, as a single column named ’states’ with rownames reflecting the taxon names given
in phy$tip.label. If returnAll = TRUE, the raw data.frame from the simulation will instead be
returned.

Note

The simulateWithPriors functions are effectively the engine that powers the doRun functions,
while the doSimulation functions are the pistons within the simulateWithPriors engine. In
general, most users will just drive the car - they will just use doRun, but some users may want to use
simulateWithPriors or doSimulation functions to do various simulations.

Author(s)

Brian O’Meara and Barb Banbury

Examples

set.seed(1)
tree <- rcoal(20)
# get realistic edge lengths
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tree$edge.length <- tree$edge.length*20

#Simple Brownian motion

char <- doSimulation(
phy = tree,
generation.time = 100000,
intrinsicFn = brownianIntrinsic,
extrinsicFn = nullExtrinsic,
startingValues = c(10), #root state
intrinsicValues = c(0.01),
extrinsicValues = c(0))

#Character displacement model with minimum bound

char <- doSimulation(
phy = tree,
generation.time = 100000,
intrinsicFn = boundaryMinIntrinsic,
extrinsicFn = ExponentiallyDecayingPushExtrinsic,
startingValues = c(10), #root state
intrinsicValues = c(0.05, 10, 0.01),
extrinsicValues = c(0, .1, .25))

extrinsicModels Extrinsic Character Evolution Models

Description

Functions describing various models of ’extrinsic’ evolution (i.e. evolutionary processes dependent
on factors extrinsic to the evolving lineage, such as environmental change, or other evolving lineages
that interact with the lineage in question (competitors, predators, etc).

Usage

nullExtrinsic(params, selfstates, otherstates, timefrompresent)

nearestNeighborDisplacementExtrinsic(
params,
selfstates,
otherstates,
timefrompresent

)

everyoneDisplacementExtrinsic(params, selfstates, otherstates, timefrompresent)

ExponentiallyDecayingPushExtrinsic(
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params,
selfstates,
otherstates,
timefrompresent

)

Arguments

params A vector containing input parameters for the given model (see Description below
on what parameters).

selfstates Vector of current trait values for the population of interest. May be multiple
for some models, but generally expected to be only a single value. Multivariate
TreEvo is not yet supported.

otherstates Matrix of current trait values for all concurrent taxa/populations other than the
one of interest, with one row for each taxon, and a column for each trait. May
be multiple states per taxa/populations for some models, but generally expected
to be only a single value. Multivariate TreEvo is not yet supported.

timefrompresent

The amount of time from the present - generally ignored except for time-dependent
models.

Details

The following extrinsic models are:

nullExtrinsic describes a model of no extrinsic character change. It has no parameters, really.

nearestNeighborDisplacementExtrinsic describes a model of extrinsic trait evolution where
character values of a focal taxon depend on the values of closest relatives on the tree (e.g. competi-
tive exclusion). The input parameters for this model are: nearestNeighborDisplacementExtrinsic
with parameters params = sigma, springK, maximumForce

everyoneDisplacementExtrinsic describes a model of extrinsic trait evolution where the charac-
ter values of a focal taxon depend on the values of all co-extant relatives on the simulated tree. The
input parameters for this model are: everyoneDisplacementExtrinsic with parameters params
= sigma, springK, maximumForce

ExponentiallyDecayingPushExtrinsic describes a model of extrinsic trait evolution where the
character values of a focal taxon is ’pushed’ away from other taxa with similar values, but the
force of that ’push’ exponentially decays as lineages diverge and their character values become less
similar. The input parameters for this model are: ExponentiallyDecayingPushExtrinsic with
parameters params = sigma, maximumForce, halfDistance

Value

A vector of values representing character displacement of that lineage over a single time step.

Author(s)

Brian O’Meara and Barb Banbury
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See Also

Intrinsic models are described at intrinsicModels.

Examples

set.seed(1)
# Examples of simulations with various extrinsic models (and null intrinsic model)
tree <- rcoal(20)
# get realistic edge lengths
tree$edge.length <- tree$edge.length*20

#No trait evolution except due to
# character displacement due to nearest neighbor taxon

char <- doSimulation(
phy = tree,
intrinsicFn = nullIntrinsic,
extrinsicFn = nearestNeighborDisplacementExtrinsic,
startingValues = c(10), #root state
intrinsicValues = c(0),
extrinsicValues = c(0.1, 0.1, 0.1),

generation.time = 100000)

#Similarly, no trait evolution except due to
# character displacement from all other taxa in the clade

char <- doSimulation(
phy = tree,
intrinsicFn = nullIntrinsic,
extrinsicFn = everyoneDisplacementExtrinsic,
startingValues = c(10), #root state
intrinsicValues = c(0),
extrinsicValues = c(0.1, 0.1, 0.1),
generation.time = 100000)

# A variant where force of character displacement decays exponentially
# as lineages become more different

char <- doSimulation(
phy = tree,
intrinsicFn = nullIntrinsic,
extrinsicFn = ExponentiallyDecayingPushExtrinsic,
startingValues = c(10), #root state
intrinsicValues = c(0),
extrinsicValues = c(0.1, 0.1, 2),
generation.time = 100000)

getBMRatePrior Get Brownian Motion Rate Prior
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Description

This function automatically calculates prior distributions for the rate of trait evolution under the
Brownian Motion (BM) model on a discrete time-scale, at a given timeStep, in the sense that that
variable is used with other TreEvo functions like doRun_prc.

Usage

getBMRatePrior(phy, traits, timeStep, verbose = TRUE)

Arguments

phy A phylogenetic tree, in package ape’s phylo format.

traits Data matrix with rownames identical to phy@tip.label. If a vector, traits
will be coerced to a matrix, with element names as rownames.

timeStep time in a single iteration of the discrete-time simulation

verbose If TRUE, gives messages about how the simulation is progessing via message.

Details

Returns a matrix of prior values that can be used in the doRun functions. Builds on functions in
phylolm to estimate distribution.

Value

Returns a matrix of prior values

Author(s)

Brian O’Meara and Barb Banbury

Examples

data(simRunExample)

#timeStep = 0.1 -> effectively ~100 steps over the tree length

getBMRatePrior(phy = simPhyExample, traits = simCharExample,
timeStep = 0.01, verbose = TRUE)
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highestDensityInterval

Highest Density Interval

Description

This function calculates highest density intervals (HDIs) for a given univariate vector. Typically,
this is done to obtain highest posterior density (HPD) for each freely varying parameter estimated
in the posterior of a Bayesian MCMC analysis. If these intervals are calculated for more than one
variable, they are referred to instead as regions.

Usage

highestDensityInterval(
dataVector,
alpha,
coda = FALSE,
verboseMultimodal = TRUE,
stopIfFlat = TRUE,
...

)

Arguments

dataVector A vector of data, which can be reasonably assumed to represent independent,
identically-distributed random variables, such as estimates of a parameter from
a Bayesian MCMC.

alpha The threshold used for defining the highest density frequency cut-off. If the
highest density interval is applied to a Bayesian MCMC posterior sample, then
the interval is effectively calculated for this value as a posterior probability den-
sity.

coda Default is FALSE. If TRUE, unimodal highest density regions will instead be cal-
culated using HPDinterval from package coda, which is similar to the function
quantile in that it calculates only a single interval.

verboseMultimodal

If TRUE, the function will print a message indicating when the inferred highest
density interval is discontinuous, and thus likely reflects that the supplied data
is multimodal.

stopIfFlat If TRUE (the default), the function will terminate and return an error if the dis-
tribution appears to be flat, with a high number of tied values in the posterior.
If FALSE, the function will instead attempt to move forward, while returning a
warning instead. The latter option is mainly implemented so internal calls to
highestDensityInterval do not block otherwise long-running analyses.

... Additional arguments passed to density. A user may want to mess with this to
adjust bandwidth, et cetera.
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Details

By default, HDI calculation is preformed by fitting a kernal density estimate (KDE) via R function
density with default bandwidth, rescaling the kernal to a density, sorting intervals along the KDE
by that density, and then summing these values from largest to smallest, until the desired alpha is
reached. This algorithm is quick, and accounts for potentially multimodal distributions, or those
with complex shapes, unlike unimodal intervals, such as quantiles, or the HPDinterval in package
coda.

Alternatively, a user can opt to use function HPDinterval from package coda to calculate highest
density intervals. These will work as long as the data has a single mode - data with multiple modes
may have overly large quantiles (to encompass those multiple modes), resulting in overly wide
estimates of coverage.

References

Hyndman, R. J. 1996. Computing and Graphing Highest Density Regions. The American Statisti-
cian 50(2):120-126.

See Also

HPDinterval in package coda for an alternative used by older versions of TreEvo which cannot
properly handle multimodal distributions.

Examples

set.seed(444)

# let's imagine we have some variable with
# an extreme bimodal distribution

z <- sample(c(rnorm(50, 1, 2), rnorm(100, 50, 3)))
hist(z)

# now let's say we want to know the what sort of values
# are reasonably consistent with this distribution

# for example, let's say we wanted the ranges within
# which 80% of our data occurs

# one way to do this would be a quantile
# two tailed 80% quantiles

quantile(z, probs = c(0.1, 0.9))

# that seems overly broad - there's essentially no density
# in the central valley - but we want to exclude values found there!
# A value of 30 doesn't match this data sample, right??

# the problem is that all quantile methods are essentially based on
# the empirical cumulative distribution function - which is monotonic
# (as any cumulutative function should be), and thus
# quantiles can only be a single interval
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# A different approach is to use density from stats
density(z)
# we could then take the density estimates for
# particular intervals, rank-order them, and
# then cumulative sample until we reach
# our desired probability density (alpha)

# let's try that
alpha <- 0.8
zDensOut <- density(z)
zDensity <- zDensOut$y/sum(zDensOut$y)
inHPD <- cumsum(-sort(-zDensity)) <= alpha
# now reorder
inHPD <- inHPD[order(order(-zDensity))]
colDens <- rep(1, length(zDensity))
colDens[inHPD] <- 2
# and let's plot it, with colors
plot(zDensOut$x, zDensity, col = colDens)

# and we can do all that (except the plotting)
# with highestDensityInterval

highestDensityInterval(z, alpha = 0.8)

#############################
# example with output from doRun_prc
data(simRunExample)

# we'll use summarizePosterior, which just automates picking
# the last generation, and freely-varying parameters for HDRs

# alpha = 0.95
summarizePosterior(

resultsBMExample[[1]]$particleDataFrame,
alpha = 0.95)

# you might be tempted to use alphas like 95%, but with bayesian statistics
# we often don't sample the distribution well enough to know
# its shape to exceeding detail. alpha = 0.8 may be more reasonable.
summarizePosterior(

resultsBMExample[[1]]$particleDataFrame,
alpha = 0.8)

intrinsicModels Intrinsic Character Evolution Models

Description

Functions describing various models of ’intrinsic’ evolution (i.e. evolutionary processes intrinsic to
the evolving lineage, independent of other evolving lineages (competitors, predators, etc).
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Usage

nullIntrinsic(params, states, timefrompresent)

brownianIntrinsic(params, states, timefrompresent)

boundaryIntrinsic(params, states, timefrompresent)

boundaryMinIntrinsic(params, states, timefrompresent)

boundaryMaxIntrinsic(params, states, timefrompresent)

autoregressiveIntrinsic(params, states, timefrompresent)

maxBoundaryAutoregressiveIntrinsic(params, states, timefrompresent)

minBoundaryAutoregressiveIntrinsic(params, states, timefrompresent)

autoregressiveIntrinsicTimeSlices(params, states, timefrompresent)

autoregressiveIntrinsicTimeSlicesConstantMean(params, states, timefrompresent)

autoregressiveIntrinsicTimeSlicesConstantSigma(params, states, timefrompresent)

Arguments

params A vector containing input parameters for the given model (see Description below
on what parameters).

states Vector of current trait values for a taxon. May be multiple for some models,
but generally expected to be only a single value. Multivariate TreEvo is not yet
supported.

timefrompresent

The amount of time from the present - generally ignored except for time-dependent
models.

Details

The following intrinsic models are:

nullIntrinsic describes a model of no intrinsic character change. It has no parameters, really.

brownianIntrinsic describes a model of intrinsic character evolution via Brownian motion. The
input parameters for this model are: boundaryIntrinsic with parameters params = sigma

boundaryIntrinsic describes a model of intrinsic character evolution where character change is
restricted above a minimum and below a maximum threshold. The input parameters for this model
are: boundaryMinIntrinsic with parameters params = sigma, minimum, maximum

boundaryMinIntrinsic describes a model of intrinsic character evolution where character change
is restricted above a minimum threshold. The input parameters for this model are: boundaryMinIntrinsic
with parameters params = sigma, minimum
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autoregressiveIntrinsic describes a model of intrinsic character evolution. New character val-
ues are generated after one time step via a discrete-time OU process. The input parameters for this
model are: autoregressiveIntrinsic with params = sigma (sigma), attractor (character
mean), attraction (alpha)

minBoundaryAutoregressiveIntrinsic describes a model of intrinsic character evolution. New
character values are generated after one time step via a discrete-time OU process with a minimum
bound. The input parameters for this model are: MinBoundaryAutoregressiveIntrinsic with pa-
rameters params = sigma (sigma), attractor (character mean), attraction (alpha), minimum

autoregressiveIntrinsicTimeSlices describes a model of intrinsic character evolution. New
character values are generated after one time step via a discrete-time OU process with differ-
ing means, sigma, and attraction over time. In the various TimeSlices models, time threshold
units are in time before present (i.e., 65 could be 65 MYA). The last time threshold should be
0. The input parameters for this model are: autoregressiveIntrinsicTimeSlices with parame-
ters params = sd-1 (sigma-1),attractor-1 (character mean-1), attraction-1 (alpha-1),
time threshold-1,sd-2 (sigma-2), attractor-2 (character mean-2), attraction-2 (alpha-2),
time threshold-2

autoregressiveIntrinsicTimeSlicesConstantMean describes a model of intrinsic character
evolution. New character values are generated after one time step via a discrete-time OU process
with differing sigma and attraction over time The input parameters for this model are: autoregressiveIntrinsicTimeSlicesConstantMean
with parameters params = sd-1 (sigma-1), attraction-1 (alpha-1), time threshold-1, sd-2
(sigma-2),attraction-2 (alpha-2), time threshold-2, attractor (character mean)

autoregressiveIntrinsicTimeSlicesConstantSigma describes a model of intrinsic character
evolution. New character values are generated after one time step via a discrete-time OU pro-
cess with differing means and attraction over time. The input parameters for this model are:
autoregressiveIntrinsicTimeSlicesConstantSigma with parameters params = sigma (sigma),attractor-1
(character mean-1), attraction-1 (alpha-1), time threshold-1,attractor-2 (character
mean-2), attraction-2 (alpha-2), time threshold-2

Value

A vector of values representing character displacement of that lineage over a single time step.

Author(s)

Brian O’Meara and Barb Banbury

See Also

Another intrinsic model with multiple optima is described at multiOptimaIntrinsic. Extrinsic
models are described at abcmodels.extrinsic.

Examples

set.seed(1)
# Examples of simulations with various intrinsic models (and null extrinsic model)
tree <- rcoal(20)
# get realistic edge lengths
tree$edge.length <- tree$edge.length*20
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#Simple Brownian motion Intrinsic Model
char <- doSimulation(

phy = tree,
intrinsicFn = brownianIntrinsic,
extrinsicFn = nullExtrinsic,
startingValues = c(10), #root state
intrinsicValues = c(0.01),
extrinsicValues = c(0),
generation.time = 100000)

# Simple model with BM, but a minimum bound at 0, max bound at 15
char <- doSimulation(

phy = tree,
intrinsicFn = boundaryIntrinsic,
extrinsicFn = nullExtrinsic,
startingValues = c(10), #root state
intrinsicValues = c(0.01, 0, 15),
extrinsicValues = c(0),
generation.time = 100000)

# Autoregressive (Ornstein-Uhlenbeck) model
# with minimum bound at 0

char <- doSimulation(
phy = tree,
intrinsicFn = minBoundaryAutoregressiveIntrinsic,
extrinsicFn = nullExtrinsic,
startingValues = c(10), #root state
intrinsicValues = c(0.01, 3, 0.1, 0),
extrinsicValues = c(0),
generation.time = 100000)

# Autoregressive (Ornstein-Uhlenbeck) model
# with max bound at 1

char <- doSimulation(
phy = tree,
intrinsicFn = maxBoundaryAutoregressiveIntrinsic,
extrinsicFn = nullExtrinsic,
startingValues = c(10), #root state
intrinsicValues = c(0.01, 3, 0.1, 1),
extrinsicValues = c(0),
generation.time = 100000)

landscapeFPK_Intrinsic

Intrinsic Trait Evolution Model for a Macroevolutionary Landscape
on a Fokker-Planck-Kolmogorov Potential Surface (Boucher et al.,
2018)
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Description

This function describes a discrete-time Fokker-Planck-Kolmogorov Potential Surface model (the
FPK model for short), described for trait macroevolution by Boucher et al. (2018), and included
here in TreEvo for use as an intrinsic trait model. This model can be used to describe a complex
landscape of hills and valleys for a bounded univariate trait space.

Usage

landscapeFPK_Intrinsic(params, states, timefrompresent, grainScaleFPK = 100)

getTraitBoundsFPK(traitData)

plot_landscapeFPK_model(
params,
grainScaleFPK = 1000,
traitName = "Trait",
plotLandscape = TRUE

)

Arguments

params A vector containing input parameters for the given model (see Description below
on what parameters).

states Vector of current trait values for a taxon. May be multiple for some models,
but generally expected to be only a single value. Multivariate TreEvo is not yet
supported.

timefrompresent

The amount of time from the present - generally ignored except for time-dependent
models.

grainScaleFPK To calculate the potential-surface landscape, the trait space is discretized into
fine intervals, and the potential calculated for each interval. The scale of this
discretization can be controlled with this argument, which specifies the number
of intervals used (default is 1000 intervals).

traitData A set of trait data to calculate distant bounds from for use with this model.

traitName The name given to the trait, mainly for use in the macroevolutionary landscape
plot.

plotLandscape If TRUE, the estimated macroevolutionary landscape is plotted by the function.

Details

The FPK model is a four parameter model for describing the evolution of a trait without reference
to the traits of other taxa (i.e. an intrinsic model in the terminology of package TreEvo). Three
of these parameters are used to describe the shape of the landscape, which dictates a lineage’s
overall deterministic evolutionary trajectory on the landscape, while the fourth parameter (sigma)
is a dispersion parameter that describes the rate of unpredictable, stochastic change.

The bounds on the trait space are treated as two additional parameters, but these are intended in
the model as described by Boucher et al. to be treated as nuisance parameters. Boucher et al.
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intentionally fix these bounds at a far distance beyond the range of observed trait values, so in order
to ensure they have as little effect on the evolutionary trajectories as possible.

The discrete time Fokker-Planck-Kolmogorov model used here describes a landscape specific to a
population at a particular time, with a particular trait value. This landscape represents a potential
surface, where height corresponds to a tendency to change in that direction. This allows for multiple
optima, and assigns different heights to those optima, which represent the current attraction for a
population to move toward that trait value. The shape of this potential surface is the macroevolu-
tionary landscape. which Boucher et al describe the shape of using a fourth-order polynomial with
the cubic component removed:

V (x) = ax4 + bx2 + cx

Where x is the trait values within the bounded interval - for simplicity, these are internally rescaled
to sit within the arbitrary interval (-1.5 : 1.5). The parameters thus that describe the landscape
shape are the coefficients a, b, and c. To calculate the landscape, the trait space is discretized into
fine intervals, and the potential calculated for each interval. The scale of this discretization can be
controlled by the user.

Note that if the landscape has a single peak, or if the potential surface is flat, the model effectively
collapses to Brownian Motion, or Ornstein-Uhlenbeck with a single optima. To (roughly) quote
Boucher et al: ‘Finally, note that both BM and the OU model are special cases of the FPK model:
BM corresponds to V(x)=0 and OU to V(x)=((alpha/sigma^2)*x^2)-((2*alpha*theta/(sigma^2))*x).’

Value

A vector of values representing character displacement of that lineage over a single time step.

Author(s)

David W. Bapst, loosely based on studying the code for function Sim_FPK from package BBMV.

References

Boucher, F. C., V. Demery, E. Conti, L. J. Harmon, and J. Uyeda. 2018. A General Model for
Estimating Macroevolutionary Landscapes. Systematic Biology 67(2):304-319.

See Also

An alternative approach in TreEvo to estimating a macroevolutionary landscape with multiple op-
tima is the intrinsic model multiOptimaIntrinsic, however this model requires an a priori choice
on the number of optima and the assumption that the optima have similar attractor strength. Other
intrinsic models are described at intrinsicModels.

Examples

set.seed(444)
traitData<-rnorm(100,0,1)
# need traits to calculate bounds
bounds<-getTraitBoundsFPK(traitData)
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# pick a value at random
trait<-0

# two peak symmetric landscape example
params<-c(
a=2,
b=-4,
c=0,
sigma=1,
bounds)

plot_landscapeFPK_model(params)

# simulate under this model - simulated trait DIVERGENCE
landscapeFPK_Intrinsic(params=params, states=trait, timefrompresent=NULL)

# simulate n time-steps, repeat many times, plot results
repeatSimSteps<-function(params,trait,nSteps){
for(i in 1:nSteps){
# add to original trait value to get new trait value
trait<-trait+landscapeFPK_Intrinsic(
params=params, states=trait, timefrompresent=NULL)
}

trait
}

repSim<-replicate(30,repeatSimSteps(params,trait,20))
hist(repSim,main="Simulated Trait Values")

# uneven two peak symmetric landscape example
params<-c(
a=2,
b=-4,
c=0.3,
sigma=1,
bounds)

plot_landscapeFPK_model(params)

# simulate under this model - simulated trait DIVERGENCE
landscapeFPK_Intrinsic(params=params, states=trait, timefrompresent=NULL)

repSim<-replicate(30,repeatSimSteps(params,trait,20))
hist(repSim,main="Simulated Trait Values")

methodsPLS Fitting Univariate Partial Least Squares Models to Free Parameters in
ABC
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Description

Function returnPLSModel fits a PLS regression (using plsr) individually to each freely varying
parameter of a model, unlike a true multivariate PLS regression. A secondary step than limits the
number of components to those that explain some minimum cumulative percentage of variance (see
argument variance.cutoff). For ABC, this seems to result in much better results, without one
parameter dominating the combined variance.

Usage

returnPLSModel(
trueFreeValuesMatrix,
summaryValuesMatrix,
validation = "CV",
scale = TRUE,
variance.cutoff = 95,
verbose = TRUE,
segments = min(10, nrow(summaryValuesMatrix) - 1),
...

)

PLSTransform(summaryValuesMatrix, pls.model)

Arguments

trueFreeValuesMatrix

Matrix of true free values from simulations.
summaryValuesMatrix

Matrix of summary statistics from simulations.

validation Character argument controlling what validation procedure is used by plsr. De-
fault is "CV" for cross-validation.

scale This argument is passed to plsr. It may be a numeric vector, or logical. If nu-
meric vector, the input is scaled by dividing each variable with the corresponding
element of scale. If scale = TRUE, the inpus is scaled by dividing each variable
by its sample standard deviation. If cross-validation is selected (the default for
returnPLSModel), scaling by the standard deviation is done for every segment.

variance.cutoff

Minimum threshold percentage of variance explained for the number of compo-
nents included in the final PLS model fit. This value is a percentage and must
be between 0 and 100. Default is 95 percent.

verbose If TRUE, helpful warning messages will be made when you make questionable
decisions.

segments Number of segments of data used for crossvalidaton by pls::cvsegments. The
number of segments cannot exceed the number of simulations. The default
number of segments as set for normal use of plsr is 10, which leads to is-
sues when a trial analysis uses fewer than 10 simulations. Instead, we will
pass an alternative value for the number of segments - either 10, or the num-
ber of rows in summaryValuesMatrix. Thus, this is a default value of min(10,
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nrow(summaryValuesMatrix)), or can be changed by the user. A hard mini-
mum of 3 is required.

... Additional arguments, passed to plsr.

pls.model Output from returnPLSModel.

Details

Function PLSTransform uses results from a Partial Least Squares (PLS) model fit with returnPLSModel
to transform summary values.

Value

Function returnPLSModel returns a PLS model, and function PLSTransform returns transformed
summary statistics.

Author(s)

Brian O’Meara and Barb Banbury

See Also

Function returnPLSModel effectively wraps function plsr from package pls (see documentation
at mvr).

Examples

set.seed(1)
simPhyExample <- rcoal(20)
simPhyExample$edge.length <- simPhyExample$edge.length * 20

# example simulation

nSimulations <- 6

simDataParallel <- parallelSimulateWithPriors(
nrepSim = nSimulations,
multicore = FALSE,
coreLimit = 1,
phy = simPhyExample,
intrinsicFn = brownianIntrinsic,
extrinsicFn = nullExtrinsic,
startingPriorsFns = "normal",
startingPriorsValues = list(

c(mean(simCharExample[, 1]),
sd(simCharExample[, 1]))),

intrinsicPriorsFns = c("exponential"),
intrinsicPriorsValues = list(10),
extrinsicPriorsFns = c("fixed"),
extrinsicPriorsValues = list(0),
generation.time = 10000,
checkpointFile = NULL,
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checkpointFreq = 24,
verbose = FALSE,
freevector = NULL,
taxonDF = NULL
)

nParFree <- sum(attr(simDataParallel, "freevector"))

# separate the simulation results:
# 'true' generating parameter values from the summary values

trueFreeValuesMat <- simDataParallel[, 1:nParFree]
summaryValuesMat <- simDataParallel[, -1:-nParFree]

PLSmodel <- returnPLSModel(
trueFreeValuesMatrix = trueFreeValuesMat,
summaryValuesMatrix = summaryValuesMat,
validation = "CV",
scale = TRUE,
variance.cutoff = 95 ,
segments = nSimulations
)

PLSmodel

PLSTransform(
summaryValuesMatrix = summaryValuesMat,
pls.model = PLSmodel
)

multiOptimaIntrinsic Single Evolutionary Regime Model with Multiple Optima

Description

This model describes an evolutionary process where multiple optima exist. Lineages are attracted to
an optima in their vicinity (this is handled as a stochastic process where which attract affects which
population at a given point in time is weighted with respect to the proximity of a given population’s
trait value to the given optima), but as a lineage approaches the attractor that controls it, it may ex-
perience less directional evolution in the direction of the optima, and overall show more variation.
This framework allows for the model to describe the evolution with respect to multiple optima si-
multaneously, without needing to treat individual transitions between optima (or macroevolutionary
’regimes’) as a separate parameter. Thus, the optima exist within a single evolutionary regime, with
only a scaling parameter present that allows more or less frequent transitions between optima by
altering the impact of proximity to optima.

Usage

multiOptimaIntrinsic(params, states, timefrompresent)
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Arguments

params A vector containing input parameters for the given model (see Description below
on what parameters).

states Vector of current trait values for a taxon. May be multiple for some models,
but generally expected to be only a single value. Multivariate TreEvo is not yet
supported.

timefrompresent

The amount of time from the present - generally ignored except for time-dependent
models.

Details

multiOptimaIntrinsic describes a model of intrinsic character evolution with multiple regimes.
New character values are generated after one time step via a discrete-time OU process with a partic-
ular optima assigned to a particular regime, and each time-step a lineage has some finite probability
of switching to a new regime, and being drawn to that regime’s optima. The chance of a lineage
being drawn to a particular optima is based on proximity to that optima, but the chance of switching
to another regime is never completely negligible. The strength of the draw to the optima, the attrac-
tion strength, ’alpha’, is the same for all regimes (all optima). This model has n input parameters:
multiOptimaIntrinsic with params = sigma (rate of dispersion), alpha (strength of attraction
to an optima), rho (an exponent scaling the weighting of distance to optima – this parameter will
control the probability of a lineage switching optima), and, finally, n (two or more) theta values,
which are the optima for the different macroevolutionary adaptive regimes.

Our biological interpretation for this model is a scenario in which optima represent fixed phenotypic
trait values, conveying maximum adaptive benefit relative to neighboring values in trait space. The
proximity of a population to an optima makes it more likely to fall under the influence of that
regime, and thus experience directional selection in the direction of that optima. However, as there
are multiple optima, a lineage might be influenced by multiple nearby optima over its evolutionary
history, rather than simply the closest trait optimum. Lineages equidistant between multiple optima
should be equally likely to be drawn to any specific optima, and populations in general should
experience the influence of nearby optima inversely relative to their distance from the optima. Thus,
a lineage very close to an optimum would show a large variance in its trait values as it circles the
adaptive plateau, with infrequent but sudden, far-spanning movements toward a different optimum.

Value

A vector of values representing character displacement of that lineage over a single time step.

Author(s)

David W. Bapst

See Also

An alternative approach in TreEvo to estimating a macroevolutionary landscape with multiple op-
tima is the Fokker-Planck-Kolmogorov (FPK) model, which can be fit with landscapeFPK_Intrinsic.
This model does not assume a set number of optima nor that they have similar attractor strength,
but parameters may be difficult to interpret in isolation, and fitting this model may be slower with
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TreEvo due to necessary linear algebra transformations. Other intrinsic models are described at
intrinsicModels.

Examples

# three optima model, with strong attraction
set.seed(1)
params<-c(
sigma=0.1,
alpha=0.7,
rho=1,
theta=c(-20,20,50)
)

multiOptimaIntrinsic(params=params, states=0, timefrompresent=NA)

# simulate n time-steps, repeat many times, plot results
repeatSimSteps<-function(params,trait=0,nSteps){
for(i in 1:nSteps){
# add to original trait value to get new trait value
trait<-trait+multiOptimaIntrinsic(
params=params, states=trait, timefrompresent=NA)
}
trait
}

repSim<-replicate(300,repeatSimSteps(params,trait=0,100))
hist(repSim,main="Simulated Trait Values",breaks=20)

# same model above, with more switching between optima
set.seed(1)
params<-c(
sigma=0.1,
alpha=0.7,
rho=0.5,
theta=c(-20,20,50)
)

multiOptimaIntrinsic(params=params, states=0, timefrompresent=NA)

# simulate n time-steps, repeat many times, plot results
repeatSimSteps<-function(params,trait=0,nSteps){
for(i in 1:nSteps){
# add to original trait value to get new trait value
trait<-trait+multiOptimaIntrinsic(
params=params, states=trait, timefrompresent=NA)
}
trait
}

repSim<-replicate(300,repeatSimSteps(params,trait=0,100))
hist(repSim,main="Simulated Trait Values",breaks=20)
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pairwiseESS Pairwise Effective Sample Size

Description

This function calculates Effective Sample Size (ESS) on results. The ESS algorithm performs best
when results are from multiple runs.

Usage

pairwiseESS(inputData)

Arguments

inputData The input dataset can be a single data frame or a list of data frames.

Value

Returns a matrix with ESS values of all pairwise runs.

Author(s)

Brian O’Meara and Barb Banbury

Examples

data(simRunExample)

# this will give a warning
pairwiseESS(resultsBMExample[[1]]$particleDataFrame)

# ESS should be calculated over multiple runs
pairwiseESS(resultsBMExample)

# you can also manually assemble a list of particleDataFrame tables
# and use this as the input

inputList <- list(
resultsBMExample[[2]]$particleDataFrame,
resultsBMExample[[1]]$particleDataFrame
)

pairwiseESS(inputList)
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pairwiseKS Pairwise Kolmogorov-Smirnov test

Description

This function calculates Kolmogorov-Smirnov on results.

Usage

pairwiseKS(particleDataFrameList)

Arguments

particleDataFrameList

An object of type list, composed of particleDataFrames from separate analyses.

Value

Returns a matrix with Kolmogorov-Smirnov values of all pairwise runs.

Author(s)

Brian O’Meara and Barb Banbury

Examples

data(simRunExample)

pdfList <- list(
Brownian = resultsBMExample[[1]]$particleDataFrame,
Bounded = resultsBoundExample[[1]]$particleDataFrame
)

pairwiseKS(particleDataFrameList = pdfList)

parentOffspringPlots Plotting Parent-Offspring Particles

Description

This function uses the particleDataFrame output by TreEvo ABC analyses and plots parent-
offspring particles from generation to generation.

Usage

parentOffspringPlots(particleDataFrame)
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Arguments

particleDataFrame

particleDataFrame output by TreEvo ABC analyses.

Details

Each parameter is plotted twice for parent-offspring relationships through the generations. In the
top row, particles are plotted as a measure of distance to the observed data; the farther away the
particle the bigger the circle. In the bottom row, particles are plotted as a measure of their weights;
larger circles are closer to observed data and therefore carry more weight in the analysis.

As of version 0.6.0, rejected particles are not saved for outputting by the parallelized algorithm, and
thus they are no longer displayed by this function.

Value

Creates a set of parent-offspring plots.

Author(s)

Brian O’Meara and Barb Banbury

Examples

data(simRunExample)
parentOffspringPlots(resultsBMExample[[1]]$particleDataFrame)

plotABC_3D 3D ABCplots

Description

Plot posterior density distribution for each generation in 3d plot window

Usage

plotABC_3D(
particleDataFrame,
parameter,
show.particles = "none",
plot.parent = FALSE,
realParam = FALSE,
realParamValues = NA

)
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Arguments

particleDataFrame

A particleDataFrame object, as found among the output from doRun func-
tions.

parameter Column number of parameter of interest from particleDataFrame.

show.particles Option to show particles on 3d plot as "none" or as a function of "weights" or
"distance".

plot.parent Option to plot lines on the floor of the 3d plot to show particle parantage.

realParam Option to display real parameter value as a solid line, also must give actual value
for this (realParamValues). Note: this should only be done with simulated data
where real param values are recorded.

realParamValues

Value for realParam.

Details

This opens a new interactive 3d plotting window and plots the posterior density distribution of
accepted particles from each generation. Several options are available to add to the plot: plotting
particles by weight or distance, plotting particle parantage, and plotting the real parameter values
(if known).

As of version 0.6.0, rejected particles are not saved for outputting by the parallelized algorithm, and
thus they are no longer displayed by this function, unlike previous versions.

Note

This function requires access to the function triangulate and the as method for class gpc.poly
from package gpclib. As of 08-22-19, this package was not available from CRAN as a Windows
binary, and thus this function is likely unavailable to many (if not all) Windows users.

This function also requires the package rgl, which is usually easier to obtain than package gpclib,
but may not be buildable on some UNIX workstations.

Author(s)

Barb Banbury

Examples

# need to check for required suggested packages
if(requireNamespace("gpclib", quietly = TRUE) & requireNamespace("rgl", quietly = TRUE)){

data(simRunExample)
plotABC_3D(

particleDataFrame = resultsBMExample[[1]]$particleDataFrame,
parameter = 7,
show.particles = "none",
plot.parent = FALSE,
realParam = FALSE,
realParamValues = NA
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)

}

plotPosteriors Plot posterior distributions

Description

For each free parameter in the posterior, this function creates a plot of the distribution of values
estimated in the last generation. This function can also be used to visually compare against true
(generating) parameter values in a simulation.

Usage

plotPosteriors(
particleDataFrame,
priorsList,
realParam = FALSE,
realParamValues = NA

)

Arguments

particleDataFrame

A particleDataFrame object returned by TreEvo ABC analyses, can be a sin-
gle data frame or a list of data frames. If the particleDataFrame is a list of
separate TreEvo runs, posteriors will be layered over each other to check for re-
peatability. The relative gray-scale of posterior distributions in the plot depends
on their total number of runs.

priorsList A priorList list object, returned by TreEvo doRun functions, where each ele-
ment is itself a list of length two, composed of the name for the prior function
(e.g. 'uniform', and a vector of the parameters for that prior distribution). Can
be a single such list, or a list of priorList lists from a series of analyses (i.e.
a list of depth 3). If the priorList is a list of lists (if it is found to be a list of
depth 3, only the first list will be evaluated, and all other lists will be ignored.
In other words, priors are expected to be identical for all runs considered by this
function, such the choice of using the list of priors from the first analysis in the
list is acceptable for all comparisons.

realParam If TRUE, this function will plot line segments where real parameter values are
known. (Usually only true when simulated data is analyzed.)

realParamValues

Values for real parameters, include a value for each parameter (including fixed
values). Otherwise should be NA.

Value

Returns a plot for each free parameter.
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Note

realParam and realParamValues should only be used with simulated data, where the true values
are known.

Author(s)

Barb Banbury and Brian O’Meara

See Also

plotPrior for a set of functions for visualizing and summarizing prior and posterior distributions,
including a visual comparison for single parameters.

Examples

data(simRunExample)

# make a list of particleDataFrames to plot multiple runs
resultsPDFlist <- lapply(resultsBMExample, function(x) x$particleDataFrame)

plotPosteriors(
resultsPDFlist,
priorsList = resultsBMExample[[1]]$priorList,
realParam = TRUE,
realParamValues = c(ancStateExample, genRateExample)
)

plotPriorPost Plotting, Summarizing and Comparing the Prior and Posterior Distri-
butions

Description

Assorted functions for visualizing and summarizing the prior and posterior probability distributions
associated with ABC analyses.

Usage

plotPrior(
priorFn = match.arg(arg = priorFn, choices = c("fixed", "uniform", "normal",
"lognormal", "gamma", "exponential"), several.ok = FALSE),

priorVariables,
plotQuants = TRUE,
plotLegend = TRUE

)

plotUnivariatePosteriorVsPrior(
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posteriorCurve,
priorCurve,
label = "parameter",
trueValue = NULL,
...

)

getUnivariatePriorCurve(
priorFn,
priorVariables,
nPoints = 1e+05,
from = NULL,
to = NULL,
alpha = 0.8,
coda = FALSE,
verboseMultimodal = TRUE,
...

)

getUnivariatePosteriorCurve(
acceptedValues,
from = NULL,
to = NULL,
alpha = 0.8,
coda = FALSE,
verboseMultimodal = TRUE,
...

)

Arguments

priorFn Prior Shape of the distribution; one of either "fixed", "uniform", "normal", "log-
normal", "gamma", or "exponential".

priorVariables Variables needed to describe the shape of the distribution, dependent on priorFn:

priorFn = "uniform" priorVariables = c(min, max)
priorFn = "normal" priorVariables = c(mean, standard deviation)
priorFn = "lognormal" priorVariables = c(mean, standard deviation)
priorFn = "gamma" priorVariables = c(shape, scale)
priorFn = "exponential" priorVariables = c(rate)

plotQuants If TRUE, plots line segments at the quantiles

plotLegend If TRUE, plots legend box with quantile values

posteriorCurve Kernal density estimates for the posterior distribution from getUnivariatePosteriorCurve.

priorCurve Kernal density estimates for the prior distribution from getUnivariatePriorCurve.

label Horizontal X-axis label for the plot.

trueValue True parameter value, if any such exists and is known (usually only true of
simulations).
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... For getUnivariatePriorCurve and getUnivariatePosteriorCurve, this can
contain additional arguments passed to density, for use in both calculating the
kernal density estimate for finding the curve, and for estimating the highest den-
sity interval. A user may want to mess with this to adjust bandwidth, et cetera.
For plotUnivariatePosteriorVsPrior, this passes additional commands to
the initial call plot, and thus can set things like a main plotting title, among
other things.

nPoints Number of points to draw.

from Lower bound, if any. By default this is NULL and thus ignored.

to Upper bound, if any. By default this is NULL and thus ignored.

alpha The threshold used for defining the highest density frequency cut-off. If the
highest density interval is applied to a Bayesian MCMC posterior sample, then
the interval is effectively calculated for this value as a posterior probability den-
sity.

coda Default is FALSE. If TRUE, unimodal highest density regions will instead be cal-
culated using HPDinterval from package coda, which is similar to the function
quantile in that it calculates only a single interval.

verboseMultimodal

If TRUE, the function will print a message indicating when the inferred highest
density interval is discontinuous, and thus likely reflects that the supplied data
is multimodal.

acceptedValues Vector of accepted particle values.

Details

Function plotPrior visualizes the shape of various prior probability distributions available in
TreEvo ABC analyses, while getUnivariatePriorCurve returns density coordinates and sum-
mary statistics from user-selected prior probability distribution.

Similarly, function getUnivariatePosteriorCurve returns density coordinates and summary statis-
tics from the posterior distribution of an ABC analysis.

Both getUnivariatePriorCurve and getUnivariatePosteriorCurve also calculate the highest
density intervals for their respective parameters, using the function highestDensityInterval.

Function plotUnivariatePosteriorVsPrior plots the univariate density distributions from the
prior and posterior against each other for comparison, along with the highest density intervals (HDI)
for both.

The summaries calculated from getUnivariatePriorCurve and getUnivariatePosteriorCurve
are used as the input for plotUnivariatePosteriorVsPrior, hence the relationship of these func-
tions to each other, and why they are listed together here.

Value

plotPrior and plotUnivariatePosteriorVsPrior produce plots of the respective distributions
(see above).

getUnivariatePriorCurve returns a list of x and y density coordinates, mean, and the highest
density intervals (HDI) for their respective distribution.
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getUnivariatePosteriorCurve does the same for a posterior sample of parameter estimates, re-
turning a list of x and y density coordinates, mean, and the highest posterior density intervals (HPD).

Author(s)

Brian O’Meara and Barb Banbury

See Also

Highest posterior densities are calculated via highestDensityInterval.

plotPosteriors Plots multiple posteriors against their priors and potential known values.

Examples

data(simRunExample)

# examples with plotPrior

plotPrior(
priorFn = "exponential",
priorVariables = c(10))

plotPrior(
priorFn = "normal",
priorVariables = c(1, 2))

plotPrior(
priorFn = "gamma",
priorVariables = c(2, .2),
plotQuants = FALSE,
plotLegend = FALSE)

# examples of getting density coordinates and
# summary statistics from distributions

priorKernal <- getUnivariatePriorCurve(
priorFn = "normal",
priorVariables = c(28, 2),
nPoints = 100000,
from = NULL,
to = NULL,
alpha = 0.95)

postKernal <- getUnivariatePosteriorCurve(
acceptedValues =

resultsBMExample[[1]]$particleDataFrame$starting_1,
from = NULL,
to = NULL,
alpha = 0.95)

priorKernal
postKernal



simRunExample 43

# let's compare this (supposed) prior
# against the posterior in a plot

plotUnivariatePosteriorVsPrior(
posteriorCurve = postKernal,
priorCurve = priorKernal,
label = "parameter",
trueValue = NULL)

# cool!

simRunExample Example Analysis Output of a Simulated Dataset

Description

Simulated 30-taxon coalescent tree and simulated character data from a Brownian Motion intrinsic
model (brownianIntrinsic), with saved generating parameters. Character data was generated
under this model using doSimulation. Also includes results from an example analysis.

Format

Loading the simRunExample example dataset adds seven new objects to the namespace:

simPhyExample A simulated 30-tip coalescent phylogeny in typical phylo format.

ancStateExample The starting ancestral value, used for generating the simulated continuous trait
data.

genRateExample The true rate of trait change under Brownian Motion, used for generating the
simulated continuous trait data.

simCharExample The output of doSimulation on simPhyExample, under the model brownianIntrinsic.
composed of just the simulated trait values as a one-column matrix with row names indicating
tip labels, as desired by doRun functions.

resultsBMExample The results of doRun_prc, under the generating model of brownianIntrinsic

resultsBoundExample The results of doRun_prc, under the incorrect model of boundaryMinIntrinsic

The objects resultsBMExample and resultsBoundExample are lists composed of a number of
elements (see the documentation for the doRun_prc function for more detail).

Examples

data(simRunExample)

# ...things to do with this data?

###################
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# This data was generated using this process:

## Not run:

library(TreEvo)

set.seed(1)
simPhyExample <- rcoal(20)
# get realistic edge lengths
simPhyExample$edge.length <- simPhyExample$edge.length*20

# plot with time axis (root is about ~15 Ma)
plot(simPhyExample)
axisPhylo()

genRateExample <- c(0.001)
ancStateExample <- c(10)

#Simple Brownian motion
simCharExample <- doSimulation(

phy = simPhyExample,
intrinsicFn = brownianIntrinsic,
extrinsicFn = nullExtrinsic,
startingValues = ancStateExample, #root state
intrinsicValues = genRateExample,
extrinsicValues = c(0),
generation.time = 10000
)

resultsBMExample <- doRun_prc(
phy = simPhyExample,
traits = simCharExample,
intrinsicFn = brownianIntrinsic,
extrinsicFn = nullExtrinsic,
startingPriorsFns = "normal",
startingPriorsValues = list(c(mean(simCharExample[, 1]), sd(simCharExample[, 1]))),
intrinsicPriorsFns = c("exponential"),
intrinsicPriorsValues = list(10),
extrinsicPriorsFns = c("fixed"),
extrinsicPriorsValues = list(0),
generation.time = 10000,
nRuns = 2,
nStepsPRC = 3,
numParticles = 20,
nInitialSimsPerParam = 10,
jobName = "examplerun_prc",
stopRule = FALSE,
multicore = FALSE,
verboseParticles = TRUE,
coreLimit = 1
)
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resultsBoundExample <- doRun_prc(
phy = simPhyExample,
traits = simCharExample,
intrinsicFn = boundaryMinIntrinsic,
extrinsicFn = nullExtrinsic,
startingPriorsFns = "normal",
startingPriorsValues = list(c(mean(simCharExample[, 1]), sd(simCharExample[, 1]))),
intrinsicPriorsFns = c("exponential", "normal"),
intrinsicPriorsValues = list(10,c(-10,1)),
extrinsicPriorsFns = c("fixed"),
extrinsicPriorsValues = list(0),
generation.time = 10000,
nRuns = 2,
nStepsPRC = 3,
numParticles = 20,
nInitialSimsPerParam = 10,
jobName = "examplerun_prc_bound",
stopRule = FALSE,
multicore = FALSE,
verboseParticles = TRUE,
coreLimit = 1
)

rm(.Random.seed)
save.image(file = "simRunExample.rdata")
if(interactive()){savehistory("simRunExample.Rhistory")}

## End(Not run)

simulateWithPriors Simulate data for initial TreEvo analysis

Description

The simulateWithPriors function pulls parameters from prior distributions and conducts a single
simulation of continuous trait evolution (using the doSimulation function), returning useful sum-
mary statistics for ABC. parallelSimulateWithPriors is a wrapper function for simulateWithPriors
that allows for multithreading and checkpointing. This family of functions is mostly used as inter-
nal components, generating simulations within ABC analyses using the doRun functions. See Note
below.

Usage

simulateWithPriors(
phy = NULL,
intrinsicFn,
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extrinsicFn,
startingPriorsFns,
startingPriorsValues,
intrinsicPriorsFns,
intrinsicPriorsValues,
extrinsicPriorsFns,
extrinsicPriorsValues,
generation.time = 1000,
TreeYears = max(branching.times(phy)) * 1e+06,
timeStep = NULL,
giveUpAttempts = 10,
verbose = FALSE,
checks = TRUE,
taxonDF = NULL,
freevector = NULL

)

parallelSimulateWithPriors(
nrepSim,
multicore,
coreLimit,
phy,
intrinsicFn,
extrinsicFn,
startingPriorsFns,
startingPriorsValues,
intrinsicPriorsFns,
intrinsicPriorsValues,
extrinsicPriorsFns,
extrinsicPriorsValues,
generation.time = 1000,
TreeYears = max(branching.times(phy)) * 1e+06,
timeStep = NULL,
checkpointFile = NULL,
checkpointFreq = 24,
verbose = TRUE,
checkTimeStep = TRUE,
verboseNested = FALSE,
freevector = NULL,
taxonDF = NULL,
giveUpAttempts = 10

)

Arguments

phy A phylogenetic tree, in package ape’s phylo format.

intrinsicFn Name of (previously-defined) function that governs how traits evolve within a
lineage, regardless of the trait values of other taxa.
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extrinsicFn Name of (previously-defined) function that governs how traits evolve within a
lineage, based on their own (’internal’) trait vlaue and the trait values of other
taxa.

startingPriorsFns

Vector containing names of prior distributions to use for root states: can be one
of "fixed", "uniform", "normal", "lognormal", "gamma", "exponential".

startingPriorsValues

A list of the same length as the number of prior distributions specified in startingPriorsFns
(for starting values, this should be one prior function specified for each trait -
thus one for most univariate trait analyses), with each element of the list a vector
the same length as the appropriate number of parameters for that prior distribu-
tion (1 for "fixed", 2 for "uniform", 2 for "normal", 2 for "lognormal", 2
for "gamma", 1 for "exponential").

intrinsicPriorsFns

Vector containing names of prior distributions to use for intrinsic function pa-
rameters: can be one of "fixed", "uniform", "normal", "lognormal", "gamma",
"exponential".

intrinsicPriorsValues

A list of the same length as the number of prior distributions specified in intrinsicPriorsFns
(one prior function specified for each parameter in the intrinsic model), with
each element of the list a vector the same length# as the appropriate number
of parameters for that prior distribution (1 for "fixed", 2 for "uniform", 2 for
"normal", 2 for "lognormal", 2 for "gamma", 1 for "exponential").

extrinsicPriorsFns

Vector containing names of prior distributions to use for extrinsic function pa-
rameters: can be one of "fixed", "uniform", "normal", "lognormal", "gamma",
"exponential".

extrinsicPriorsValues

A list of the same length as the number of prior distributions specified in extrinsicPriorsFns
(one prior function specified for each parameter in the extrinsic model), with
each element of the list a vector the same length as the appropriate number of
parameters for that prior distribution (1 for "fixed", 2 for "uniform", 2 for
"normal", 2 for "lognormal", 2 for "gamma", 1 for "exponential").

generation.time

The number of years per generation. This sets the coarseness of the simula-
tion; if it’s set to 1000, for example, the population’s trait values change every
1000 calendar years. Note that this is in calendar years (see description for ar-
gument TreeYears), and not in millions of years (as is typical for dated trees
in macroevolutionary studies). Thus, if a branch is 1 million-year time-unit
long, and a user applies the default generation.time = 1000, then 1000 evo-
lutionary changes will be simulated along that branch. See documentation for
doSimulation for further details.

TreeYears The amount of calendar time from the root to the furthest tip. Most trees in
macroevolutionary studies are dated with branch lengths in units of millions of
years, and thus the default for this argument is max(branching.times(phy))
* 1e6. If your tree has the most recent tip at time zero (i.e., the modern day),
this would be the same as the root age of the tree. If your branch lengths are



48 simulateWithPriors

not in millions of years, you should alter this argument. Otherwise, leave this
argument alone. See documentation for doSimulation for further details.

timeStep This value corresponds to the length of intervals between discrete evolutionary
events (’generations’) simulated along branches, relative to a rescaled tree where
the root to furthest tip distance is 1. For example, timeStep = 0.01 of would
mean 100 (i.e., 1 / 0.01) evolutionary changes would be expected to occur from
the root to the furthest tip. (Note that the real number simulated will be much
less, because simulations start over at each branching node.) Ideally, timeStep
(or its effective value, via other arguments) should be as short as is computation-
ally possible. Typically NULL by default and determined internally as follows:
timeStep = generation.time / TreeYears. Can be provided a value as an al-
ternative to using arguments generation.time and TreeYears, which would
then be overridden. See documentation for doSimulation for further details.

giveUpAttempts Value for when to stop the analysis if NA values are present.
verbose If TRUE, gives messages about how the simulation is progessing via message.
checks If TRUE, checks inputs for consistency. This activity is skipped (checks = FALSE)

when run in parallel by parallelSimulateWithPriors, and instead is only
checked once. This argument also controls whether simulateWithPriors as-
signs freevector as an attribute to the output produced.

taxonDF A data.frame containing data on nodes (both tips and internal nodes) output
by various internal functions. Can be supplied as input to spead up repeated
calculations, but by default is NULL, which instead forces a calculation from
input phy.

freevector A logical vector (with length equal to the number of parameters), indicating free
(TRUE) and fixed (FALSE) parameters.

nrepSim Number of replicated simulations to run.
multicore Whether to use multicore, default is FALSE. If TRUE, one of two suggested pack-

ages must be installed, either doMC (for UNIX systems) or doParallel (for
Windows), which are used to activate multithreading. If neither package is in-
stalled, this function will fail if multicore = TRUE.

coreLimit Maximum number of cores to be used.
checkpointFile Optional file name for checkpointing simulations
checkpointFreq Saving frequency for checkpointing
checkTimeStep If TRUE, warnings will be issued if TimeStep is too short.
verboseNested Should looped runs of simulateWithPriors be verbose?

Value

Function simulateWithPriors returns a vector of trueFreeValues, the true generating param-
eters used in the simulation (a set of values as long as the number of freely varying parameters),
concatenated with a set of summary statistics for the simulation.

Function parallelSimulateWithPriors returns a matrix of such vectors bound together, with
each row representing a different simulation.

By default, both functions also assign a logical vector named freevector, indicating the total
number of parameters and which parameters are freely-varying (have TRUE values), as an attribute
of the output.
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Note

The simulateWithPriors functions are effectively the engine that powers the doRun functions,
while the doSimulation function is the pistons within the simulateWithPriors engine. In gen-
eral, most users will just drive the car - they will just use doRun, but some users may want to use
simulateWithPriors or doSimulation to do various simulations.

Author(s)

Brian O’Meara and Barb Banbury

Examples

set.seed(1)
tree <- rcoal(20)
# get realistic edge lengths
tree$edge.length <- tree$edge.length*20

# example simulation

# NOTE: the example analyses involve too few simulations,
# as well as overly coarse time-units...
# ...all for the sake of examples that reasonably test the functions

simData <- simulateWithPriors(
phy = tree,
intrinsicFn = brownianIntrinsic,
extrinsicFn = nullExtrinsic,
startingPriorsFns = "normal",
startingPriorsValues = list(

c(mean(simCharExample[, 1]), sd(simCharExample[, 1]))),
intrinsicPriorsFns = c("exponential"),
intrinsicPriorsValues = list(10),
extrinsicPriorsFns = c("fixed"),
extrinsicPriorsValues = list(0),
generation.time = 100000,
freevector = NULL,
giveUpAttempts = 10,
verbose = TRUE)

simData

simDataParallel <- parallelSimulateWithPriors(
nrepSim = 2,
multicore = FALSE,
coreLimit = 1,
phy = tree,
intrinsicFn = brownianIntrinsic,
extrinsicFn = nullExtrinsic,
startingPriorsFns = "normal",
startingPriorsValues = list(

c(mean(simCharExample[, 1]), sd(simCharExample[, 1]))),
intrinsicPriorsFns = c("exponential"),
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intrinsicPriorsValues = list(10),
extrinsicPriorsFns = c("fixed"),
extrinsicPriorsValues = list(0),
generation.time = 100000,
checkpointFile = NULL, checkpointFreq = 24,
verbose = TRUE,
freevector = NULL,
taxonDF = NULL)

simDataParallel

summarizePosterior Summarize Posterior Distribution for a Free Parameter

Description

This function summarizes the distribution of parameter estimates from the posterior of an ABC
analysis using the doRun functions in TreEvo, for all freely varying parameters. Only the final gen-
eration is considered. This summary includes the mean, standard deviation and Highest Posterior
Density (at a 0.8 alpha) for each parameter.

Usage

summarizePosterior(
particleDataFrame,
alpha = 0.8,
coda = FALSE,
verboseMultimodal = TRUE,
stopIfFlat = TRUE,
...

)

Arguments

particleDataFrame

A particleDataFrame object, as found among the output from doRun func-
tions.

alpha The threshold used for defining the highest density frequency cut-off. If the
highest density interval is applied to a Bayesian MCMC posterior sample, then
the interval is effectively calculated for this value as a posterior probability den-
sity.

coda Default is FALSE. If TRUE, unimodal highest density regions will instead be cal-
culated using HPDinterval from package coda, which is similar to the function
quantile in that it calculates only a single interval.
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verboseMultimodal

If TRUE, the function will print a message indicating when the inferred highest
density interval is discontinuous, and thus likely reflects that the supplied data
is multimodal.

stopIfFlat If TRUE (the default), the function will terminate and return an error if the dis-
tribution appears to be flat, with a high number of tied values in the posterior.
If FALSE, the function will instead attempt to move forward, while returning a
warning instead. The latter option is mainly implemented so internal calls to
highestDensityInterval do not block otherwise long-running analyses.

... Additional arguments passed to density. A user may want to mess with this to
adjust bandwidth, et cetera.

Value

Returns a list, wherein each element of the list is secondary list containing the weighted mean,
standard deviation, and a matrix giving the highest density intervals (e.g. the highest posterior
density intervals). Because posterior estimates of parameter values may be multimodal, multiple
sets of bounds may be reported for complex posterior distributions, which each constitute one row
of the output matrix. See highestDensityInterval for details.

Author(s)

David W Bapst

See Also

This function is essentially a wrapper for independently applying a few summary statistics and
applying highestDensityInterval to multiple parameter estimates, taken from the last generation
of an ABC analysis in TreEvo. As each parameter is handled independently, the returned HPD
intervals may not properly account for covariation among parameter estimates from the posterior.
If testing whether a given observation is within a given density of the posterior or not, please look
at function testMultivarOutlierHDR.

Examples

# example with output from doRun_prc
data(simRunExample)

# alpha = 0.95
summarizePosterior(

resultsBMExample[[1]]$particleDataFrame,
alpha = 0.95)

# you might be tempted to use alphas like 95%,
# but with bayesian statistics

# we often don't sample the distribution well enough to know
# its shape to exceeding detail.
# alpha = 0.8 may be more reasonable.

summarizePosterior(
resultsBMExample[[1]]$particleDataFrame,
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alpha = 0.8)

# or even better, for coverage purposes, maybe 0.5
summarizePosterior(

resultsBMExample[[1]]$particleDataFrame,
alpha = 0.5)

testMultivarOutlierHDR

Test If an Outlier Is Within a Highest Density Region of a Multivariate
Cloud of Data Points

Description

This function takes a matrix, consisting of multiple observations for a set of variables, with observa-
tions assumed to be independent and identically distributed, calculates a highest density interval for
each of those variables (using highestDensityInterval), and then tests if some potential ’outlier’
(a particular observation for that set of variables), is within that highest density interval. Typically,
users may want to account for possible non-independence of the variables, which could lead to
inflated false-positive rates with this test of coverage. To account for this, this function allows for
the option of applying principal component analysis to rotate the variables, and then calculate the
highest density intervals from the orthogonal principal component scores.

Usage

testMultivarOutlierHDR(
dataMatrix,
outlier,
alpha,
coda = FALSE,
verboseMultimodal = FALSE,
pca = TRUE,
...

)

Arguments

dataMatrix A matrix consisting of rows of data observations, with one or more variables as
the columns, such that each multivariate observation can be reasonably assumed
to represent independent, identically-distributed random variables. For example,
a matrix of sampled parameter estimates from the post-burnin posterior of a
Bayesian MCMC.

outlier A vector of consisting of a single observation of one or more variables, with the
same length as the number of columns in /codedataMatrix. Not necessarily a
true ’outlier’ per se but some data point of interest that you wish to test whether
it is inside some given probability density estimated from a sample of points.
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alpha The threshold used for defining the highest density frequency cut-off. If the
highest density interval is applied to a Bayesian MCMC posterior sample, then
the interval is effectively calculated for this value as a posterior probability den-
sity.

coda Default is FALSE. If TRUE, unimodal highest density regions will instead be cal-
culated using HPDinterval from package coda, which is similar to the function
quantile in that it calculates only a single interval.

verboseMultimodal

If TRUE, the function will print a message indicating when the inferred highest
density interval is discontinuous, and thus likely reflects that the supplied data
is multimodal.

pca If TRUE (the default), a principal components analysis is applied to the provided
input data, to reorient the data along orthogonal axes, with the purpose of poten-
tially reducing covariation among the variables. If your variables are known to
have little covariation among them, and/or have strange distributions that may
violate the multivariate normal assumptions of a principal components analysis,
then it may be advisable to set pca = FALSE.

... Additional arguments passed to density. A user may want to mess with this to
adjust bandwidth, et cetera.

Details

Quantiles, or highest density intervals are essentially a univariate concept. They are calculated
independently on each variable, as if each variable was independent. They are often used to try to
piece together ’regions’ of confidence or credibility in statistics. Unfortunately, this means that that
if variables are correlated, the box-like region they describe in the multivariate space may not cover
enough of the actual data scatter, while covering lots of empty space.

There are several solutions. There are a number of approaches for fitting ellipsoids to bivariate data.
But what about multivariate datasets, such as sets of parameter estimates from the posterior of a
Bayesian analysis, which may have an arbitrary number of variables (and thus dimensions)?

A different solution, applied here when pca = TRUE, is to remove the non-independence among
variables by rotating the dataset with principal components analysis. While this approach has its
own flaws, such as assuming that the data reflects a multivariate normal. However, this is absolutely
an improvement on not-rotating, particularly if being done for the purpose of this functon, which
is essentially to measure coverage–to measure whether some particular set of values falls within a
highest density region (a multivariate highest density interval).

Value

A logical, indicating whether the given data point (outlier) is within the multivariate data cloud at
the specified threshold probability density.

Author(s)

David W. Bapst
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See Also

This function is essentially a wrapper for applying highestDensityInterval to multivariate data,
along with princomp in package stats.

Examples

# First, you should understand the problems
# with dealing with correlated variables and looking at quantiles

# simulate two correlated variables
set.seed(444)
x <- rnorm(100, 1, 1)
y <- (x*1.5)+rnorm(100)

# find the highest density intervals for each variable
pIntX <- highestDensityInterval(x, alpha = 0.8)
pIntY <- highestDensityInterval(y, alpha = 0.8)

# These define a box-like region that poorly
# describes the actual distribution of
# the data in multivariate space.

# Let's see this ourselves...
xLims <- c(min(c(x, pIntX)), max(c(x, pIntX)))
yLims <- c(min(c(y, pIntY)), max(c(y, pIntY)))
plot(x, y, xlim = xLims, ylim = yLims)
rect(pIntX[1], pIntY[1], pIntX[2], pIntY[2])

# So, that doesn't look good.
# Let's imagine we wanted to test if some outlier
# was within that box:

outlier <- c(2, -1)
points(x = outlier[1], y = outlier[2], col = 2)

# we can use testMultivarOutlierHDR with pca = FALSE
# to do all of the above without visually checking
testMultivarOutlierHDR(dataMatrix = cbind(x, y),

outlier = outlier, alpha = 0.8, pca = FALSE)

# Should that really be considered to be within
# the 80% density region of this data cloud?

#####

# let's try it with PCA

pcaRes <- princomp(cbind(x, y))
PC <- pcaRes$scores

pIntPC1 <- highestDensityInterval(PC[, 1], alpha = 0.8)
pIntPC2 <- highestDensityInterval(PC[, 2], alpha = 0.8)
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# plot it
xLims <- c(min(c(PC[, 1], pIntPC1)), max(c(PC[, 1], pIntPC1)))
yLims <- c(min(c(PC[, 2], pIntPC2)), max(c(PC[, 2], pIntPC2)))
plot(PC[, 1], PC[, 2], xlim = xLims, ylim = yLims)
rect(pIntPC1[1], pIntPC2[1], pIntPC1[2], pIntPC2[2])

# That looks a lot better, isnt' filled with lots of
# white space not supported by the observed data.

# And now let's apply testMultivarOutlierHDR, with pca = TRUE
testMultivarOutlierHDR(dataMatrix = cbind(x, y),

outlier = outlier, alpha = 0.8, pca = TRUE)

#####################

# Example with four complex variables
# including correlated and multimodal variables

x <- rnorm(100, 1, 1)
y <- (x*0.8)+rnorm(100)
z <- sample(c(rnorm(50, 3, 2),

rnorm(50, 30, 3)))
a <- sample(c(rnorm(50, 3, 2),

rnorm(50, 10, 3)))+x^2

#plot(x, y)
#plot(x, z)
#plot(x, a)
data <- cbind(x, y, z, a)

# actual outlier, but maybe not obvious if PCA isn't applied
outlier <- c(2, 0.6, 10, 8)
# this one should appear to be an outlier (but only if PCA is applied)
testMultivarOutlierHDR(dataMatrix = data,

outlier = outlier, alpha = 0.8)
testMultivarOutlierHDR(dataMatrix = data,

outlier = outlier, alpha = 0.8, pca = FALSE)

# this one should be within the 80% area
outlier <- c(1, 0, 30, 5)
testMultivarOutlierHDR(dataMatrix = data,

outlier = outlier, alpha = 0.8)
testMultivarOutlierHDR(dataMatrix = data,

outlier = outlier, alpha = 0.8, pca = FALSE)

# this one should be an obvious outlier no matter what
outlier <- c(3, -2, 20, 18)
# this one should be outside the 80% area
testMultivarOutlierHDR(dataMatrix = data,

outlier = outlier, alpha = 0.8)
testMultivarOutlierHDR(dataMatrix = data,

outlier = outlier, alpha = 0.8, pca = FALSE)
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